פירוק שור
מראה
משפט הפירוק של שור הוא משפט באלגברה ליניארית הקובע כי כל מטריצה ריבועית מעל המספרים המרוכבים דומה אוניטרית למטריצה משולשית עליונה, המשפט נקרא על שמו של ישי שור, משפט זה משמש להוכחת משפט הפירוק הספקטרלי בגרסתו המורחבת עבור מטריצות נורמליות.
המשפט
[עריכת קוד מקור | עריכה]תהא מטריצה ריבועית מעל C, אזי קיימת מטריצה משולשית עליונה B ומטריצה אוניטרית U כך ש:
בצורה דומה, לכל אופרטור ליניארי מעל מרחב וקטורי V מעל C בעל מימד n, קיימת סדרה של תת-מרחבים שמורים .
ראו גם
[עריכת קוד מקור | עריכה]קישורים חיצוניים
[עריכת קוד מקור | עריכה]
נושאים באלגברה ליניארית | ||
---|---|---|
מושגי יסוד | שדה • מרחב וקטורי • משוואה ליניארית • מערכת משוואות ליניאריות • העתקה ליניארית • מטריצה | |
וקטורים | סקלר • כפל בסקלר • צירוף ליניארי • תלות ליניארית • קבוצה פורשת • בסיס • וקטור קואורדינטות • ממד | |
מטריצות | כפל מטריצות • שחלוף • דטרמיננטה • דירוג מטריצות • דרגה • עקבה • מטריצה מצורפת • מטריצת מעבר • מטריצה משולשית • דמיון מטריצות • ערך עצמי • פולינום אופייני • לכסון מטריצות • צורת ז'ורדן | |
העתקות | העתקה ליניארית • קואורדינטות • מטריצה מייצגת • גרעין • אנדומורפיזם • איזומורפיזם • העתקה אפינית • העתקה פרויקטיבית | |
מרחבי מכפלה פנימית | מכפלה סקלרית • מכפלה וקטורית • אורתוגונליות • מטריצה סימטרית • אופרטור הרמיטי • אופרטור אוניטרי • טרנספורמציה נורמלית • נורמה • מטריקה | |
תבניות | תבנית ביליניארית • תבנית סימטרית • תבנית הרמיטית • תבנית סימפלקטית • חפיפת מטריצות • משפט סילבסטר • תבנית מולטי-ליניארית אנטי-סימטרית • אוריינטציה • צפיפות • טנזור |