צילום רנטגן

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש
צילום ידו של אלברט פון קוליקר, שנעשה על ידי וילהלם רנטגן (1896)

צילום רנטגן הוא צילום רדיוגרפי, המתבצע בעזרת קרני רנטגן. עקב כושר החדירה הגבוה של הקרניים נוצר על לוח הצילום שיקוף ברור של עצמים צפופים בלבד כגון עצמות ומתכות, ואילו גופים רכים יותר מאפשרים לקרינה לעבור דרכם כמעט ללא בליעה.

השימוש[עריכת קוד מקור | עריכה]

השימוש העיקרי ביכולת צילום הרנטגן, הוא אבחון רפואי. הרפואה משתמשת בצילום הרנטגן לצורך איתור תקלות או בעיות בתוך הגוף שאינן נראות בעין רגילה.

התחום הרפואי בו משתמשים בעיקר ביכולת זו הוא אורתופדיה לאיתור תקלות או בעיות בעצמות השלד, כגון שברים חבלות או פגמים מולדים.

תחום נוסף בו יש לצילום הרנטגן שימוש רב הוא רפואת שיניים, כדי לאתר חורים בשיניים או פגמים ברקמת השן.

היסטוריה[עריכת קוד מקור | עריכה]

צילום ידה של אנה רנטגן

טכניקת צילום הרנטגן התגלתה במקרה על ידי הפיזיקאי הגרמני וילהלם רנטגן בערבו של יום ה-8 בנובמבר 1895 בשעה שערך ניסויים בשפופרת ריק במעבדתו. רנטגן זכה בפרס נובל לפיזיקה בשנת 1901 על תגליתו זו.

צילום הרנטגן המפורסם ביותר שביצע רנטגן הוא של כף ידה של אשתו, ובו ניתן להבחין בעצמות כף היד ובטבעת הנישואין שעל אצבעה, ובתוואי עדין של שאר הרקמות.

אחת ממעבדות הרנטגן הראשונות בעולם בבעלות פרטית כבר בשנת 1900 הייתה של הרופא היהודי ד"ר אבא לפין מקובנה שבליטא[1].

עקרונות הצילום[עריכת קוד מקור | עריכה]

הצילום הרדיוגרפי, וצילום רנטגן בכללו, מבוססים על יכולת החדירה של קרינת הרנטגן (X) בחומר. לקרינה זו אורך גל קצר, שנבלע בחומרים צפופים או עבים, אך חודר חומרים רכים או דקים. הקרינה שלא נבלעה פוגעת בסרט צילום ייעודי, ומייננת את גרעיני ברומיד הכסף שבו. לאחר תהליך פיתוח סרט הצילום, שבו מושחרים הגרעינים המיוננים, מתקבלת תמונה - רדיוגרמה - ובה מוצג שיקוף החלק.

הצילום מתבצע על פי רוב בעזרת שפופרת ריק קטודית, שפולטת את קרינת הרנטגן המייננת כתגובה לפגיעת אלקטרונים באטומי טונגסטן (ערך זה עוסק בצילום רדיוגרפי על גבי סרט צילום בעזרת שפופרת רנטגן, אך ישנה אפשרות לצילום גם תוך שימוש במאיצי חלקיקים שונים, כגון מאיץ חלקיקים ישר או בתתטרון).

חשיפת הסרט[עריכת קוד מקור | עריכה]

כאמור, סרט הצילום נחשף לקרינה ברמה המשתנה על ידי צפיפות החלק שצולם ועוביו. ישנם מספר פרמטרים המאפשרים שליטה על צפיפות ההשחרה שתתקבל לאחר הצילום.

  • זמן החשיפה - ככל שזמן החשיפה ארוך יותר, כך ייווצרו יותר קרני רנטגן, שישחירו יותר את סרט הצילום.
  • הזרם בסליל - עוצמת הזרם בסליל שבשפופרת קובעת את כמות האלקטרונים שייווצרו בשפופרת, ומכאן את כמות הקרניים שתווצר בכל זמן נתון. העלאה של עוצמת הזרם תקטין את זמן החשיפה.
  • המתח במטרה - האלקטרונים שבשפופרת מואצים אל מטרה עשויה נחושת המכילה בתוכה את גרעין הטונגסטן. ככל שהמתח המועבר במטרה גבוה יותר, כך האלקטרונים מואצים אליה מהר יותר. אורך הגל של הקרינה שנוצרת בעת פגיעת האלקטרון במטרה קצר יותר ככל שהמתח גבוה יותר (אורך גל קצר שווה לחדירה עמוקה יותר). מתח גבוה יותר ייתן רדיוגרמה בעלת ניגודיות נמוכה יותר.

נתוני החשיפה המורכבים ממשתני הזמן, הזרם והמתח, נקבעים תוך שימוש בסקאלה חצי לוגריתמית, שבה בוחרים מתח רצוי ביחס לעובי החלק, ומוציאים בעזרתה את המשתנה E המהווה את זמן החשיפה הרצוי. את המשתנה E מזינים לתוך הפונקציה הבאה, שממנה נגזר זמן החשיפה: E=MT

\mbox{Exposure} = \mbox{MiliAmpere}\,\times\,\mbox{Time}

כאשר E הוא המשתנה שהתקבל בסקאלה, M הוא המתח הנבחר במילי-אמפר (לרוב מדובר בקבוע שנע בין 2.5 ל-4 מיליאמפר) ו-T הוא הזמן בדקות (ניסוח אחר הוא: E=ma min כלומר - חשיפה שווה לזרם כפול דקה).

סקאלות החשיפה משתנות בין סוג חומר אחד לאחר (כך, למשל, יש הבדלי חשיפה עצומים בין אלומיניום לפלדה), ובין סוגי סרטי צילום (המתחלקים למהירים ואיטיים), והן מתייחסות לקבלת צפיפות השחרה ברמה מסוימת. לרוב, הסקאלות מיועדות לקבלת השחרה ברמת צפיפות 2 בצילום ממרחק של מטר אחד.

איכות תמונה[עריכת קוד מקור | עריכה]

שיקוף של מכשיר טלפון סלולרי

בצילום רדיוגרפי ישנם מספר מאפיינים ייחודיים שלא קיימים בצילום סטנדרטי, וזאת עקב המאפיין העיקרי של קרני הרנטגן - יכולת חדירה עמוקה דרך חומר. בעוד בצילום סטנדרטי משתמשים בהחזר של קרני אור לצורך צילום אובייקט, ברנטגן מקרינים קרינה דרך האובייקט אל סרט הצילום (הדבר דומה לפוטוגרמה).

הבעיות בהקשר איכות התמונה הן אלו:

  • לא ניתן למקד את אלומת הקרניים באמצעות עדשות ואמצעים אופטיים אחרים.
  • קרניים שמגיעות אל החלק באלכסון, למשל, ייצרו דמות מושלכת על הרדיוגרמה, בדומה לצל, והדמות המשוקפת תהיה מטושטשת (דבר הנקרא גם אי חדות גאומטרית).
  • הקרינה חודרת גם את סרט הצילום, ובמקרים מסוימים יכולה פשוט לחזור אליו מהצד השני ולטשטש את התמונה.
  • עקב האינטרקציה של הקרינה עם החומר נוצרת אי חדות אינהרטית, המורידה מחדות התמונה (חלק מהקרינה מוסטת קלות מכיוונה המקורי).
  • אותן אינטרקציות יוצרות גם החזרים ופיזור פנימי של הקרינה בחלק ומחוצה לו.

ניתן לפתור את הבעיות האלו באמצעים שונים, שרובם נועדו למנוע מקרינה לא רצויה להגיע אל סרט הצילום. שימוש במיסוך עופרת מסביב לחלק (ובעיקר מתחת לסרט הצילום) בולע את הקרינה ומונע החזרות מיותרות; את האלומה ממקדים ומסננים באמצעות סדרה של מסננים מיוחדים המורכבים על חלון ההקרנה בשפופרת, שמהווים מעין צמצם.

מיקום המצלמה ביחס לחלק הוא המאפיין הקריטי ביותר בכל הקשור לאיכות התמונה. על מנת למנוע השלכה של שיקוף החלק על פני סרט הצילום ממקמים את השפופרת - על פי רוב - בניצב לחלק המצולם, ומול מרכזו. ישנו קשר בין מרחק מקור הקרינה מהאובייקט המצולם, המרחק של קצה האובייקט העליון לסרט הצילום וגודל מקור הקרינה, בהקשר של אי חדות גאומטרית (הנובעת משבירת הקרניים בצידי החלק). קשר זה מבוטא במשוואה הבאה:

Ug=\frac{F\times\,T} {D}

כאשר Ug הוא גודל העיוות שייווצר, F הוא גודל מקור הקרינה, T הוא המרחק בין הקצה העליון של החלק לסרט הצילום (בצילום רגיל מדובר למעשה בעובי/גובה החלק), ו-D הוא המרחק בין מקור הקרינה לבין החלק המצולם. העיוות גדל ככל ש-Ug גבוה יותר. ממשוואה זו ניתן לראות בבירור שמצב אופטימלי הוא שמקור הקרינה יהיה צר ככל האפשר, ושרצוי לקבוע את המרחק בין החלק המצולם לבין מקור הקרינה על פי כפולת גודל המקור בעובי החלק (מצב אופטימלי הוא Ug=0).

מדידת איכות התמונה[עריכת קוד מקור | עריכה]

ישנם מספר פרמטרים מדידים או ברי אבחנה בתמונה, המאפשרים קביעת טיבה:

צפיפות ההשחרה נמדדת בעזרת דנסיטומטראנגלית: Densitometer; בעברית: מד צפיפות השחרה) - מכשיר המודד את כמות האור העובר ממקור האור דרך חלק נתון בסרט הצילום (לאחר הפיתוח, כמובן), אל חיישן הנמצא מהעבר השני. צפיפות השחרה 0 היא מצב שבו 100% מהאור עובר מצד לצד. צפיפות מיטבית נעה בין 1.8 ל-2.2, וטבלאות חשיפה בנויות, לרוב, לצורך חשיפה שתיתן צפיפות 2. הצפיפות נמדדת באזור שממנו נלקח העובי לחישוב החשיפה.

הצפיפות היא חלק ממאפיין הניגודיות. רדיוגרמה ניגודית היא כזו שבה ההפרדה בין עוביים או צפיפויות שונות ניכרת בבירור. אם באזור אחד צפיפות ההשחרה תהיה 0.5, ובאזור שצמוד אליו הצפיפות תהיה 2.5, הרדיוגרמה היא בעלת ניגודיות גבוהה. הנתון המשפיע ישירות על ניגודיות הסרט הוא עוצמת המתח - מתח גבוה יפיק רדיוגרמה בעלת ניגודיות נמוכה יותר, מכיוון שאורכי גל הקצרים יבלעו מעט בכל עובי בחלק המצולם, ולרדיוגרמה עצמה יש צפיפות השחרה מקסימלית סופית.

יכולת ההפרדה נמדדת בעזרת פנטרמטר (באנגלית: Pentrameter; בעברית: מד טיב תמונה; בראשי תיבות: מט"ת). הפרדה גבוהה פירושה יכולת אבחנה בפרטים בעובי של כ-2% מעובי החלק, ואף פחות מכך. ישנם שני סוגים של פנטרמטרים:

  1. פנטרמטר חוטים גרמני, המבוסס על תקן גרמני - DIN.
  2. פנטרמטר חורים אמריקאי, המבוסס על תקן ISO אמריקאי.

פנטרמטר החוטים הוא למעשה חוטים דקים, בעוביים משתנים, המחולקים לשלוש קבוצות. מ-0 עד 6, מ-6 עד 12, ומ-12 עד 16. לכל חוט עובי קבוע בתקן (הנמדד במילימטרים), שמהווה דגם התייחסות ל-2% מעובי החלק הנמדד. קיימות סדרות שונות של חוטים על פי סוג החומר שממנו עשוי החלק, על מנת ליצור השוואה אחידה. את הפנטרמטר מניחים בשעת הצילום על האזור שבו מחפשים סדקים או פריטים חריגים, ובשעת פענוח הממצאים יהיה ניתן להתייחס אליו לצורך מדידת עובי. ברדיוגרמה יופיעו החוטים כבהירים יותר מהרקע שעליהם הונחו.

הפנטרמטר האמריקאי הוא סדרה של לוחיות, עשויות ממתכות שונות, בעוביים שונים (הנמדדים באינצ'ים). בכל לוחית יש שלושה קדחים: קדח אחד הוא בעובי T (כלומר - 2% מעובי החלק הרצוי), שני הוא 2T, ושלישי הוא 4T (פי שניים ופי שלושה מ-2% עובי חלק, בהתאמה). גם עובי הלוחית הוא 2% מעובי החלק הנבדק, כלומר - T, ודבר זה מהווה יתרון של הפנטרמטר האמריקאי על פני הגרמני, מכיוון שבגלל זה ניתן למדוד גם את ניגודיות הצילום ביחס לעובי ידוע (2%).

גם את הפנטרמטר האמריקאי יש להניח על פני החלק, באזור שבו מחפשים את הסדקים או החריגה, ויש להשתמש בלוחית ממתכת הזהה לחומר המצולם. ברדיוגרמה יופיעו הקדחים ככהים יותר מהרקע שלהם (הרקע הוא הלוחית, להבדיל מהפנטרמטר הגרמני, שבו הרקע הוא החלק עצמו).

צילום דיגיטלי[עריכת קוד מקור | עריכה]

צילום רנטגן דיגיטלי

בשנים האחרונות חלה התפתחות בצילום הרנטגן, בעקבות מהפכת הצילום הדיגיטלי, ונוצרו מערכות לצילום רנטגן דיגיטלי.

מערכות אלו מתבססות על לוחות צילום שבתגובה לפגיעת הקרינה בהם נוצר בהם מתח חשמלי המתורגם לאות דיגיטלי. ישנם מספר סוגים של לוחות צילום, המבוססים על עקרונות דומים, אך דרכי היישום שונות בין לוח אחד למשנהו. חלקם חד פעמיים, וחלקם רב פעמיים (עם זאת, אין לוח צילום דיגיטלי שהשימוש בו בלתי מוגבל).

היתרון הבולט של רדיוגרפיה דיגיטלית הוא שאין צורך להמתין זמן פיתוח, וניתן לבצע עיבוד דיגיטלי עמוק לשיפור איכות הצילום. מנגד, ללוחות הדיגיטליים אין את הגמישות (כפשוטו) שבשימוש עם סרטי צילום רגילים: הם לרוב קשיחים, שבירים, בלתי ניתנים לגזירה או עיצוב, ועדיין יקרים במידה שלא מצדיקה (על פי רוב) את המרת הצילום המסורתי לדיגיטלי.

ראו גם[עריכת קוד מקור | עריכה]

קישורים חיצוניים[עריכת קוד מקור | עריכה]

תקני רדיוגרפיה[עריכת קוד מקור | עריכה]

  • ת"י 1027, חלק 1 - בדיקות רדיוגרפיה: מדידי טיב תמונה-עקרונות וזיהוי.
  • ת"י 1027, חלק 2 - בדיקות רדיוגרפיה: תנאים לאבחון רדיוגרמות - שימוש במערכי מט"ת.
  • DIN EN 12681:2003 - התקן האירופי העוסק בתהליכי צילום רדיוגרפיים.
  • ISO 5579:1998 - תקן של ארגון התקינה הבינלאומי, העוסק בחוקים הבסיסיים של רדיוגרפיה במתכות.


הערות שוליים[עריכת קוד מקור | עריכה]

  1. ^ Lietuvos radiologų laborantų draugija, באתר האיגוד הליטאי למעבדות רדיולוגיה