23 הבעיות של הילברט

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

הבעיות של הילברט הן רשימה של 23 בעיות פתוחות במתמטיקה, שהוצגה על ידי המתמטיקאי דויד הילברט ב-8 באוגוסט 1900 בוועידת פריז של הקונגרס הבינלאומי של המתמטיקאים. כל השאלות שהוצגו היו בלתי-פתורות באותה תקופה, ולרבות מהן הייתה השפעה ניכרת על המתמטיקה של המאה ה-20.

בקונגרס הוצגו רק 10 מן השאלות (1, 2, 6, 7, 8, 13, 16, 19, 21 ו-22) והרשימה המלאה התפרסמה רק מאוחר יותר. להלן כל 23 השאלות שהציג הילברט ומצבן העדכני:

מספר הבעיה תיאורה מצבה העדכני
בעיה 1 השערת הרצף נפתרה על ידי גדל וכהן שהוכיחו כי היא אינה תלויה באקסיומות המקובלות של תורת הקבוצות.
בעיה 2 להוכיח שמערכת האקסיומות של האריתמטיקה היא עקבית משפט אי-השלמות השני של גדל מראה שהמשימה בלתי אפשרית מתוך האריתמטיקה עצמה; גרהרד גנצן הוכיח את עקביות האריתמטיקה בהתבסס על מערכת אקסיומות שונה.
בעיה 3 האם אפשר להוכיח שוויון נפחים של שני טטראדרים באמצעות חיתוך מקס דן הראה שהתשובה שלילית, עוד באותה שנה שהוצגה הבעיה (1900).
בעיה 4 למצוא גאומטריות שבהן האקסיומות קרובות לאלו של הגאומטריה האוקלידית, תוך שמירה על אקסיומות החילה, החלשת אקסיומות הסדר, וויתור על אקסיומת המקבילים ניסוחה מעורפל מכדי לקבוע אם נפתרה או לא.
בעיה 5 האם חבורות רציפות הן בהכרח גזירות? נפתרה חלקית, על ידי אנדרו גליסון, בתחילת שנות ה-50.
בעיה 6 ניסוח אקסיומטי של כל החוקים הפיזיקליים פתוחה.
בעיה 7 האם ab טרנסצנדנטי, כאשר a ≠ 0,1 אלגברי ו-b אלגברי אי-רציונלי ? תשובה חיובית: משפט גלפונד.
בעיה 8 בעיות בתורת המספרים: הוכחת השערת רימן והשערת גולדבך שתי הבעיות פתוחות.
בעיה 9 הכללת חוק ההדדיות הריבועי לכל שדה מספרים נפתרה חלקית, עבור הרחבות אבליות, על ידי אמיל ארטין.
בעיה 10 למצוא אלגוריתם שייקבע, בהינתן משוואה דיופנטית, האם היא פתירה נפתרה: התשובה שלילית, לא קיים אלגוריתם שכזה.
בעיה 11 פתרון של משוואות ריבועיות במספר משתנים, עם מקדמים אלגבריים נפתרה חלקית, בידי הלמוט הסה.
בעיה 12 הכללת משפט קרונקר-ובר על ההרחבות האבליות של המספרים הרציונליים לשדה מספרים כלשהו. פתוחה.
בעיה 13 פתרון משוואות ממעלה שביעית באמצעות פונקציות של שני משתנים נפתרה על ידי ולדימיר ארנולד.
בעיה 14 האם מערכות שלמות מסוימות של פונקציות הן סופיות? נפתרה על ידי מסיושי נגשה ב-1958.
בעיה 15 ביסוס מסודר של תחשיב שוברט נפתרה (לא ברור אם חלקית או לחלוטין).
בעיה 16 מציאה ופיתוח טופולוגיה של עקומות ומשטחים אלגבריים ממשיים. פתוחה.
בעיה 17 הצגת פונקציה רציונלית חיובית כסכום ריבועים של פונקציות רציונליות נפתרה. לחיוב על ידי אמיל ארטין ב-1927.
בעיה 18 האם יש פאון קמור לא רגולרי שממלא את המרחב?
מהו הסידור הטוב ביותר של כדורים במרחב? (השערת קפלר)
כנראה נפתרה.
בעיה 19 האם הפתרונות של לגראנז'יאן הם תמיד אנליטיים? נפתרה על ידי אניו דה ג'יורג'י וכן בנפרד ובמתודולוגיה שונה על ידי ג'ון נאש ב-1957.
בעיה 20 האם לכל הבעיות בחשבון וריאציות עם תנאי שפה מסוימים, יש פתרונות? נפתרה.
בעיה 21 הוכחת קיום של משוואה דיפרנציאלית לינארית עם חבורת מונודרומיה נתונה נפתרה.
בעיה 22 האחדה של יחסים אנליטיים באמצעות פונקציות אוטומורפיות נפתרה.
בעיה 23 התפתחות נוספת בתחום חשבון הווריאציות פתוחה.

לפי דבריהם של ג'רמי גריי ודיויד ראו, אשר פרסמו ספר העוסק בשאלות שהציג הילברט, רוב השאלות שהוצגו על ידי הילברט בשנת 1900 נפתרו. חלקן לא הוגדרו היטב, אבל הושגה התקדמות מספקת על מנת להגדירן כ"פתורות". ראו וגריי מציינים את הבעיה הרביעית כמעורפלת מדי מכדי להחליט אם היא נפתרה או לא.

כמו כן, הם מנו את הבעיה השמונה-עשרה כבעיה פתוחה בזמן הוצאת ספרם בשנת 2000 וזאת מכיוון ש"בעיית סידור התפוזים במרחב", הידועה גם כהשערת קפלר נשארה בלתי-פתורה, אך פתרון שהוצע נמצא בבדיקה; קיים עיכוב בבדיקת הטענה משום שראש צוות הבדיקה הודיע כי בגלל עומס הפרטים בהוכחה אין הוא יכול להכריע לגבי נכונתה. יתר על-כן, נרשמו בעשור האחרון התקדמויות גם בפתרון הבעיה השש-עשרה.

בעיה 8 כוללת שתי שאלות מפורסמות, אשר שתיהן נשארו בלי פתרון. הראשונה שבהן, השערת רימן, היא אחת משבע השאלות של פרס המילניום של קליי, אשר אמורות להוות "רשימת הילברט" חדשה למאה ה-21.

עריכת הרשימה[עריכת קוד מקור | עריכה]

בזמן הכנת רשימת הבעיות עמדו בפני הילברט עשרים וארבע שאלות רשומות, אך הילברט החליט שלא לצרף אחת מהן לרשימתו הסופית. הבעיה הנוספת עסקה בהוכחת השערה הנוגעת לפשטות ושיטות כלליות. בעיה זו התגלתה על ידי ההיסטוריון רודיגר תיילה (Rüdiger Thiele).

לקריאה נוספת[עריכת קוד מקור | עריכה]

  • Rowe, David; Gray, Jeremy J. (2000). The Hilbert Challenge. Oxford University Press.

קישורים חיצוניים[עריכת קוד מקור | עריכה]