אקסיומות ההפרדה

מתוך ויקיפדיה, האנציקלופדיה החופשית
(הופנה מהדף מרחב T1)
קפיצה לניווט קפיצה לחיפוש

אקסיומות ההפרדה (נקראות גם "תכונות ההפרדה") הן תכונות של מרחב טופולוגי, הקשורות ביכולת של הטופולוגיה להפריד בין נקודות או קבוצות שונות במרחב. ישנן כתריסר אקסיומות שונות, שהחשובה שבהן היא תכונת האוסדורף, הקרויה גם תכונת . לכמה מתכונות ההפרדה המרכזיות משתמשים בסימון , עבור ערכים שונים של . מקורה של האות T בהקשר זה הוא במלה הגרמנית Trennung, שפירושה "הפרדה".

מרחבים מטריים מקיימים את כל אקסיומות ההפרדה, ולכן אפשר לראות באקסיומות ההפרדה מעין היררכיה של מרחבים טופולוגיים, המודדת עד כמה דומה מרחב נתון (מבחינת יכולת ההפרדה שלו) למרחב מטרי.

המינוח הקשור באקסיומות ההפרדה נודע כמינוח לא אחיד: בספרים שונים השתמשו באותם שמות כדי לתאר תכונות שונות, ולכן כשמצטטים תוצאות בתחום זה, חשוב לברר באיזו הגדרה השתמש המחבר. נקודת המוצא היא האקסיומה הקרויה , שהיא דרישה פרימיטיבית באופן יחסי (כלומר, רוב המרחבים הטופולוגיים המופיעים בספרות, מקיימים אותה). בוויקיפדיה אנו מאמצים את הגישה המודרנית יותר, לפיה התכונות ונגזרותיהן מכילות את ההנחה כחלק מההגדרה, בעוד שמרחבים רגולריים ומרחבים נורמליים, על הווריאציות של תכונות אלה (ראו בהמשך), אינם נדרשים לקיים את התכונה הזו. בעבר, ובפרט בספר החשוב "Counterexamples in Topology" (שכתבו Steen ו- Seebach ב- 1970), היה מקובל היפוך של המונחים.

אקסיומות ההפרדה[עריכת קוד מקור | עריכה]

המחשה של אקסיומות ההפרדה. נקודה שחורה מסמלת נקודה במרחב, תחום כחול מסמל קבוצה פתוחה ומלבן אדום מסמל קבוצה סגורה.

ישנן שתי תכונות בסיסיות שמקובל למנות בין אקסיומות ההפרדה, אף על פי שבעצם אינן כאלה. הראשונה היא :

  • מרחב טופולוגי מקיים את התכונה , אם לכל שתי נקודות שונות, קיימת קבוצה פתוחה המכילה אחת מהן אבל לא את השנייה. במלים אחרות, לא קיימות שתי נקודות שיש להן בדיוק אותן סביבות.

במרחב שאינו מקיים דרישה זו, ישנם זוגות של נקודות שאי אפשר להבחין ביניהן במשקפי הטופולוגיה.

התכונה היא תכונה מעט חזקה יותר, מעין גרסה סימטרית של התכונה הקודמת:

  • מרחב טופולוגי מקיים את התכונה , אם לכל שתי נקודות שונות, קיימת קבוצה פתוחה המכילה את זו ולא את זו, וכן להפך.

תכונה זו שקולה לכך שכל יחידון מהווה קבוצה סגורה. כל מרחב הוא בפרט .

הפרדה בין נקודות[עריכת קוד מקור | עריכה]

כדי להציג את אקסיומות ההפרדה השונות, נפתח בכמה דוגמאות.

  • מרחב האוסדורף, או מרחב , שהוזכר קודם לכן, הוא מרחב טופולוגי, המקיים את הדרישה הבאה:
לכל שתי נקודות , קיימות קבוצות פתוחות וזרות, שאחת מהן מכילה את p, והשנייה את q.

לתכונה זו קוראים "הפרדה בין נקודות על ידי קבוצות פתוחות", כאשר ה"הפרדה" פירושה שאפשר מתוך התבוננות בקבוצות הפתוחות להיווכח בכך שהנקודות שונות זו מזו (שהרי הקבוצות זרות).

אפשר לבחון תכונת הפרדה חזקה יותר, באמצעות סביבות סגורות:

  • מרחב אוריסון, או מרחב , הוא מרחב טופולוגי, המקיים את הדרישה כי לכל שתי נקודות , קיימות סביבות סגורות וזרות, שאחת מהן מכילה את p, והשנייה את q.

נזכיר שסביבה של נקודה היא קבוצה שהנקודה נמצאת בפנים שלה; בפרט, סביבה מכילה קבוצה פתוחה, המכילה את הנקודה שלנו. ממילא ברור שהפרדה באמצעות סביבות סגורות היא תכונה חזקה יותר מהפרדה באמצעות קבוצות פתוחות.

יש תכונת הפרדה חזקה עוד יותר - באמצעות פונקציות רציפות.

  • מרחב האוסדורף לחלוטין (completely Hausdorff), הוא מרחב טופולוגי X, המקיים את הדרישה: לכל שתי נקודות , קיימת פונקציה רציפה , כך ש- ו- .

זוהי בוודאי הפרדה חזקה יותר מאשר באמצעות סביבות סגורות, משום שאת הנקודות 0 ו- 1 אפשר להפריד בסביבות סגורות על הישר הממשי, והמקורות של סביבות סגורות במרחב X (תחת פונקציה רציפה) הם סביבות סגורות.

אם כן, פגשנו שלוש רמות של הפרדה: הפרדה בקבוצות פתוחות (וזרות), הפרדה בסביבות סגורות (וזרות), והפרדה בפונקציה רציפה. בכל המקרים מדובר היה בהפרדה בין זוג נקודות. בהמשך נראה שיש סוג נוסף של הפרדה: הפרדה מדויקת באמצעות פונקציה (רציפה).

הפרדה בין קבוצה סגורה לנקודה[עריכת קוד מקור | עריכה]

  • מרחב שבו אפשר להפריד בין קבוצה סגורה לנקודה (שאינה שייכת לקבוצה) באמצעות קבוצות פתוחות, נקרא מרחב רגולרי.

לא קשה להוכיח שבמקרה כזה, אפשר להפריד בין קבוצה סגורה לנקודה גם באופן החזק יותר של סביבות סגורות.

  • מרחב שבו אפשר להפריד קבוצה סגורה ונקודה באמצעות פונקציה רציפה נקרא מרחב רגולרי לחלוטין. כמקודם, מרחב רגולרי לחלוטין הוא בפרט רגולרי.

במרחב טופולוגי כללי, נקודה אינה בהכרח קבוצה סגורה, ולכן היכולת להפריד קבוצות סגורות ונקודות אינה מלמדת אותנו על היכולת להפריד בין נקודות שונות. לעומת זאת, אם מוסיפים את ההנחה , מופיע קשר בין התכונות החדשות לתכונות שראינו קודם לכן:

  • מרחב רגולרי שהוא גם נקרא מרחב .

כל מרחב כזה מקיים את התכונה , ולכן הם נקראים גם 'מרחבי האוסדורף רגולריים'. אפשר לראות שכל מרחב רגולרי מקיים את התכונה , ולכן הוא מהווה מרחב .

  • מרחב רגולרי לחלוטין שהוא גם נקרא מרחב טיכונוף, או מרחב .

גם כאן, מרחב רגולרי לחלוטין שהוא מקיים את התכונה , ולכן הוא מהווה מרחב . כל מרחב כזה הוא בפרט .

הפרדה בין קבוצות סגורות[עריכת קוד מקור | עריכה]

  • מרחב שבו אפשר להפריד בין שתי קבוצות סגורות וזרות באמצעות קבוצות פתוחות, נקרא מרחב נורמלי.

הלמה של אוריסון קובעת שבמרחב כזה, אפשר להפריד בין שתי קבוצות סגורות וזרות גם באמצעות פונקציה רציפה - ולכן שלוש הרמות הראשונות של הפרדה מתלכדות. בדרך כלל הפרדה זו אינה הפרדה מדויקת (מושג שיוגדר בהמשך).

  • מרחב נורמלי המקיים בנוסף את התכונה , נקרא מרחב .

כל מרחב הוא בפרט (מרחב טיכונוף).

תכונות הפרדה חזקות[עריכת קוד מקור | עריכה]

במרחב נורמלי, כפי שציינו לעיל, אפשר להפריד בין כל שתי קבוצות סגורות באמצעות פונקציה רציפה. יש שתי דרכים לחזק את הדרישה הזו: לדרוש הפרדה בין יותר זוגות של קבוצות, או הפרדה באופן מוצלח יותר מסתם הפרדה באמצעות פונקציה.

'קבוצות מופרדות' הן קבוצות במרחב טופולוגי, שכל אחת מהן זרה לסגור של רעותה (ישנו קשר מסוים בין מונח זה לבין אקסיומות ההפרדה, אבל הוא אינו הדוק במיוחד). כל שתי קבוצות סגורות וזרות הן מופרדות, ולכן הפרדה בין קבוצות מופרדות היא משימה קשה יותר (אפילו בהיעדר ההנחה ).

  • מרחב שבו אפשר להפריד כל שתי קבוצות מופרדות באמצעות קבוצות פתוחות, נקרא מרחב נורמלי לחלוטין, או מרחב נורמלי תורשתי.

במרחב כזה, כל תת-מרחב הוא נורמלי בטופולוגיה המושרית.

  • מרחב נורמלי לחלוטין שהוא גם , נקרא מרחב , או מרחב לחלוטין.

כל מרחב הוא בפרט מרחב .

בכיוון אחר, אומרים שאפשר להפריד בין הקבוצות A ו- B במרחב X הפרדה מדויקת באמצעות פונקציה, אם קיימת פונקציה רציפה , כך ש- ו- . נעיר שבהפרדה רגילה אנו דורשים רק ו- . קבוצות שאפשר להפריד ביניהן הפרדה מדויקת מוכרחות להיות קבוצות סגורות, שהרי הקבוצות ו- סגורות בעצמן.

מרחב נורמלי באופן מושלם הוא נורמלי, ואף נורמלי לחלוטין (את זה קצת קשה יותר להוכיח). במרחב נורמלי באופן מושלם, כל קבוצה סגורה היא קבוצת (או באופן שקול: כל קבוצה פתוחה היא קבוצת ). תכונה זו מאפיינת מרחבים נורמליים באופן מושלם.

  • מרחב נורמלי באופן מושלם שהוא גם , נקרא מרחב באופן מושלם, או מרחב .

כל מרחב הוא בפרט מרחב .

מרחב מטרי מקיים את התכונה , ולכן גם את שאר תכונות ההפרדה שמנינו.

טענות הקשורות לאקסיומות ההפרדה[עריכת קוד מקור | עריכה]

מרחב בעל בסיס בן מניה הוא .
תת מרחב של מרחב (כאשר i=1,2,3,3.5) הוא .
מרחב מכפלה של מרחבי (כאשר i=1,2,3,3.5) גם הוא .
שתי הטענות הקודמות אינן נכונות בהכרח עבור מרחבי - למשל המרחבים ו הם נורמליים, אולם מכפלתם אינה נורמלית, ומכפלה זו היא בעצמה תת-מרחב של , שהוא מרחב נורמלי.

סיכום[עריכת קוד מקור | עריכה]

הטבלה מציגה את שמו של מרחב המקיים משימת הפרדה נתונה באופן נתון. בסוגריים מצוין שמו של מרחב כזה, אם מניחים בנוסף את התכונה .

סיכום שתי קבוצות מופרדות שתי קבוצות סגורות קבוצה סגורה ונקודה שתי נקודות
הפרדה מדויקת על ידי פונקציה - נורמלי באופן מושלם () - -
הפרדה על ידי פונקציה - נורמלי רגולרי לחלוטין () האוסדורף לחלוטין
הפרדה על ידי סביבות סגורות - נורמלי רגולרי אוריסון ()
הפרדה על ידי סביבות נורמלי לחלוטין () נורמלי () רגולרי () האוסדורף ()

כל מרחב המופיע בטבלה מקיים גם את התכונה במשבצת שמתחת לזו בה הוא מופיע. אם מניחים את התכונה , אז כל מרחב מקיים גם את התכונות שמשמאל למשבצת שבה הוא מופיע. בפרט, לכל . בכך בנינו מעין היררכיה בין אקסיומות ההפרדה.


לקריאה נוספת[עריכת קוד מקור | עריכה]

  • דניאלה ליבוביץ, טופולוגיה קבוצתית, פרק 5 (כרך ג'), הוצאת האוניברסיטה הפתוחה, 1997.