סגור (טופולוגיה) – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
GrouchoBot (שיחה | תרומות)
מ r2.7.2) (בוט מוסיף: ca:Clausura topològica
שורה 21: שורה 21:
*<math>\!\, \mbox{Cl}\left(A\cap B\right)\subseteq \mbox{Cl}(A)\cap \mbox{Cl}(B)</math>.
*<math>\!\, \mbox{Cl}\left(A\cap B\right)\subseteq \mbox{Cl}(A)\cap \mbox{Cl}(B)</math>.
*<math>\!\, \mbox{Cl}\left(A\cup B\right)= \mbox{Cl}(A)\cup \mbox{Cl}(B)</math>.
*<math>\!\, \mbox{Cl}\left(A\cup B\right)= \mbox{Cl}(A)\cup \mbox{Cl}(B)</math>.
*<math>\!\, f</math> היא [[רציפות (טופולוגיה)|פונקציה רציפה]] אם ורק אם לכל <math>\!\, A</math> בתחום שלה מתקיים <math>\!\, f\left(\mbox{Cl}(A)\right)\subseteq \mbox{Cl}\left(f(A)\right)</math>. בפרט, הסגור של קבוצה קשירה הוא קשיר.
*<math>\!\, f</math> היא [[פונקציה רציפה (טופולוגיה)|פונקציה רציפה]] אם ורק אם לכל <math>\!\, A</math> בתחום שלה מתקיים <math>\!\, f\left(\mbox{Cl}(A)\right)\subseteq \mbox{Cl}\left(f(A)\right)</math>. בפרט, הסגור של קבוצה קשירה הוא קשיר.
* אם <math>\!\, A</math> [[קשירות (טופולוגיה)|קבוצה קשירה]], לכל <math>\!\, A\subseteq B\subseteq \mbox{Cl}(A)</math> מתקיים שגם <math>\!\, B</math> קבוצה קשירה.
* אם <math>\!\, A</math> [[קשירות (טופולוגיה)|קבוצה קשירה]], לכל <math>\!\, A\subseteq B\subseteq \mbox{Cl}(A)</math> מתקיים שגם <math>\!\, B</math> קבוצה קשירה.
*קבוצה <math>\!\, A</math> במרחב <math>\!\, X</math> המקיימת <math>\!\, \mbox{Cl}(A)=X</math> נקראת [[קבוצה צפופה]].
*קבוצה <math>\!\, A</math> במרחב <math>\!\, X</math> המקיימת <math>\!\, \mbox{Cl}(A)=X</math> נקראת [[קבוצה צפופה]].

גרסה מ־14:28, 21 בפברואר 2013

בטופולוגיה, סְגוֹ‏‏ר של קבוצה S השייכת למרחב X הוא הקבוצה הסגורה הקטנה ביותר המכילה את S. מבחינה אינטואיטיבית אפשר לחשוב עליו כעל קבוצה המכילה את אברי S ואת כל הנקודות ש"נוגעות" בקבוצה S.

הגדרה פורמלית

יהא מרחב טופולוגי כלשהו, ותהא קבוצה. אם היא קבוצת הקבוצות הסגורות המקיימות , אז הסגור של יסומן או , ויוגדר על ידי:

.

נביא כאן מספר הגדרות אלטרנטיביות ששקולות להגדרה שהבאנו (כלומר, ניתן להוכיח אותן מההגדרה, ואם מקבלים אותם כהגדרה, ניתן להוכיח מהם את ההגדרה המקורית):

  • היא קבוצת כל האיברים של שבכל סביבה שלהם קיים איבר של (לא בהכרח שונה מהם).
  • , כאשר היא הקבוצה הנגזרת של .
  • הגדרה באמצעות הפנים של המשלים של הקבוצה: .

דוגמאות

תכונות הנוגעות לסגור

  • כל קבוצה סגורה שווה לסגור שלה: . בפרט הסגור הוא קבוצה סגורה ולכן .
  • .
  • .
  • .
  • היא פונקציה רציפה אם ורק אם לכל בתחום שלה מתקיים . בפרט, הסגור של קבוצה קשירה הוא קשיר.
  • אם קבוצה קשירה, לכל מתקיים שגם קבוצה קשירה.
  • קבוצה במרחב המקיימת נקראת קבוצה צפופה.
  • קבוצה במרחב המקיימת נקראת קבוצה דלילה.

נשים לב שרבות מתכונות אלו מזכירות את תכונות הפנים.

תבנית:נ