ויקיפדיה:הכה את המומחה/שאלות במדעים מדויקים

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה לניווט קפיצה לחיפוש

מעבר לתחתית הדף מעבר לתחתית הדף

לפני העלאת שאלה אנא בדקו
אם אין לה כבר תשובה בערכי ויקיפדיה.
הוספת שאלה חדשה

(שימו לב: שאלות חדשות נמצאות בסוף דף זה, ולא בתחילתו)

דפים שימושיים
ארכיונים
דפי ארכיון של הכה את המומחה - שאלות במדעים מדויקים
ארכיון כללי
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20


הכה את המומחה - שאלות במדעים מדויקים הוא המקום לפנות אליו עם שאלות ותרגילים הקשורים למדעים המדויקים - מתמטיקה, פיזיקה, כימיה, מדעי המחשב וכו'. בכל נושא אחר יש לפנות להכה את המומחה.

כמה הנחיות ועצות לשאילת שאלה בצורה טובה ויעילה:

  • בצעו חיפוש בוויקיפדיה העברית, ויקיפדיה האנגלית וגוגל. בהרבה מקרים התשובה לשאלה שלך נמצאת בערכים הרלוונטים.
  • תנו כותרת משמעותית לפסקה בה נשאלת השאלה, שממנה יבינו מה נושא השאלה (כותרות כמו "שאלה" או "צריך עזרה" הן לא כותרות טובות).
  • ויקיפדיה ו"הכה את המומחה" תומכים בממשק LaTeX המאפשר הקלדת נוסחאות מתמטיות. לעזרה וכללי תחביר המלמדים כיצד לכתוב נוסחאות בקוד LaTeX, ראו עזרה:נוסחאות.

בוויקיפדיה ישנם מדורי יעץ נוספים, המתאימים לנושאים מסוימים:

  • אם ברצונך לקבל תשובה בנושא שלא מצאת לו תשובה בוויקיפדיה, יש לשאול שאלה זו בהכה את המומחה.
  • אם שאלתך קשורה למידע חסר או חלקי בערך מסוים, יש לשאול שאלה זו בדף השיחה של אותו הערך.
  • פתרון בעיות טכניות ושאלות הנוגעות לעריכת דפי ויקיפדיה – מקומן בדלפק הייעוץ.
  • שאלות לשוניות על עברית ועל שפות אחרות ניתן להפנות לדף ייעוץ לשוני.
  • שאלות כלליות יותר לגבי מדיניות ויקיפדיה, נהלים, כיוונים וכדומה – מקומן במזנון.

המשיבים מתבקשים להשיב לעניין ומתוך ידיעה, ואם אפשר, להפנות לערכים רלוונטיים או למקורות נוספים.

תוכן עניינים

סכום ריבועים[עריכת קוד מקור]

אגב קריאת הערך על שלשה פיתגורית נחשפתי לעניין הבא:
סכומם של מספר זוגי בריבוע ומספר אי-זוגי בריבוע הוא תמיד מספר שבחלוקה ב-4 נותן שארית 1:
ניסיתי לבדוק אם גם המשפט ההפוך נכון, כלומר, אם כל מספר שבחלוקה ב-4 נותן שארית 1, הוא סכומם של מספר זוגי בריבוע ומספר א"ז בריבוע (בהקשר זה, כמובן, גם 0 נחשב מספר זוגי). קיבלתי מספר דוגמאות לשלילת המשפט ההפוך: 21, 33, 57, 69, 77, 93, כך שהמשפט ההפוך הופרך.
עכשיו צצה לי שאלה חדשה: האם ישנה נוסחה שנותנת מספרים כמו אלו, ששקולים מודולו 4 ל-1, אך אינם שווים לסכומם של ריבוע זוגי ואי-זוגי? אביתר ג'שיחה • 15:09, 22 בינואר 2019 (IST)

התשובה תלויה בפירוק המספר לגורמים ראשוניים. ראה סכום של שני ריבועים (המספרים הניתנים להצגה כזו הם אלו שבפירוק שלהם לגורמים ראשוניים כל הגורמים שאינם ריבועיים שקולים ל-1 מודולו 4). עוזי ו. - שיחה 18:31, 22 בינואר 2019 (IST)
תודה! אביתר ג'שיחה • 09:48, 24 בינואר 2019 (IST)
משהו קטן שלא הבנתי מהערך שאליו קישרת: האם הטענה, "מספר שניתן להצגה כסכום של שני ריבועים הוא זה שבפירוק שלו לגורמים ראשוניים כל הגורמים שאינם ריבועיים שקולים ל-1 מודולו 4", הוּכחה? אביתר ג'שיחה • 10:11, 27 בינואר 2019 (IST)
בוודאי. המפתח הוא שלמשוואה יש פתרון אם ורק אם p אינו שקול ל-3 מודולו 4 (ראה שארית ריבועית). נניח ש-. יהי p|n גורם ראשוני השקול ל-3 מודולו 4. מכיוון ש-, בהכרח ולכן . כעת אפשר לחלק את הפתרון ב-p ולהמשיך באותה דרך. מצד שני, אם p ראשוני שאינו שקול ל-3 מודולו 4, אפשר לפתור את המשוואה (אוילר הראה שאפשר לעשות זאת באמצעות "נסיגה אינסופית"); והצגות מהסוג הזה אפשר להכפיל זו בזו באמצעות הכפליות של הנורמה המרוכבת. עוזי ו. - שיחה 11:08, 27 בינואר 2019 (IST)
משהו חסר לי לצורך הבנת ההוכחה. מהי משמעות הביטוי p|n (או הביטוי )? מה אומר ה-"|" בביטויים הללו? אביתר ג'שיחה • 12:32, 29 בינואר 2019 (IST)
אומר ש-a מחלק את b. עוזי ו. - שיחה 13:25, 29 בינואר 2019 (IST)

עזרה בכתיבת ערך על גל הקור באמריקה[עריכת קוד מקור]

לא ידעתי איפה לבקש את זה, אז אני מבקש פה. אני זקוק לעזרה בכתיבת הערך על גל הקור בצפון אמריקה (2019) - אין לי את הידע הנדרש במטאורולוגיה כדי לכתוב על הנושא מנקודת מבט מדעית (פרק "מטאורולוגיה"). אשמח מאוד לעזרה בכתיבה. מתייג את אילן שמעוני, Tshuva, hagay1000, Shayshal2 , bambikerבעלי הידע בכדור הארץ ואילן שמעוני, Meir138, פשוט, רמי, Tshuva, Polskivinnik, Squaredevil, Le Comteבעלי הידע במדעים, ומצרף כתבה (באנגלית) על המדע מאחורי גל הקור. תודה מראש! Yuvalbab - שיחה 15:06, 6 בפברואר 2019 (IST)

המעט שאני יודע: ישנה מערבולת קבועה מעל אוקיינוס הקרח הצפוני. היא מכילה את האוויר הארקטי הקפוא, והוא זולג ממנה טיפין טיפין. לעתים לא נדירות המערבולת מתפצלת לשתיים - החלק השני מדרים לסיביר. זה נגרם כתוצאה מספיגת אנרגיה מחום האוקיינוס. ככל שהאוקיינוס חם יותר, כך המערבולת פחות יציבה.
עם ההתחממות הגלובלית האוקיינוס חם מתמיד, והמערבולת התפצלה לא לשתיים, אלא לשלוש. החלק השלישי, שהופעתו נדירה ביותר, חזיק ויציב יותר מאי פעם בהיסטוריה של המדידות. הוא נדחף דרומה, תוך שאוויר האוקיינוס החם עולה ונדחק בינו למערבולת הארקטית, והגיע לצפון אמריקה.
כל זה מסתמך על כתבה בניו יורק טיימס. בהצלחה.
!Σiη Stαlεzε אילן שמעוני - שיחה 19:52, 6 בפברואר 2019 (IST)

תבנית לוגית-פורמלית לחישוב שארית פשוט[עריכת קוד מקור]

אני ניסחתי זאת כך באנגלית:

 X/Y = sum.
   If sum is a float, do:
     sum/X = PRV (Pre Remainder Value).
       Get R (remainder) from PRV by isolating PRV's integer.

מהערך האנגלי Remainder (אנ') נראה שיש חישובי שארית מורכבים יותר מחישוב שארית פשוט ולכן אני משתמש במילה פשוט. תהיתי אם יש משוואהנוסחה לוגית-פורמלית (לוגיקה מתמטית) מקובלת המהווה אלגוריתם לחישוב שארית פשוט.

תודה רבה לכם, -- הודעה זו הושארה על ידי אנונימי/ת

אתה רוצה לחשב שאריות, או לשאול על "משוואה לוגית-פורמלית (לוגיקה מתמטית) מקובלת המהווה אלגוריתם"? עוזי ו. - שיחה 12:16, 15 בפברואר 2019 (IST)
גם וגם; ניסיתי להמציא אלגוריתם לוגי פורמלי נטול-כימות כזה אבל חשוב לי לדעת אם יש אלגוריתם פורמלי כזה ואם אפשר לתת לי דוגמה שלו. -- הודעה זו הושארה על ידי אנונימי/ת
אני לא יודע מהם "משוואה לוגית-פורמלית (לוגיקה מתמטית) מקובלת המהווה אלגוריתם" או "אלגוריתם לוגי פורמלי נטול-כימות". השארית של a בחלוקה ב-b היא כאשר (x) היא החלק השברי של x. עוזי ו. - שיחה 17:09, 15 בפברואר 2019 (IST)
עוזי, התכוונתי לנוסחה ותקנתי. הישנה נוסחה מתמטית מקובלת שתשקף את האלגוריתם שתיארתי למעלה בשפה "תכנותית"? תודה, -- הודעה זו הושארה על ידי אנונימי/ת
קשה לי להבין מה אתה רוצה. הנוסחה היא גם מתמטית וגם מקובלת. אפשר גם בצורה אלגוריתמית רקורסיבית (בהנחה ש-a,b>0; על המשתמש לרכוש ביטוח מפני לולאות אינסופיות על חשבונו): . עוזי ו. - שיחה 18:50, 16 בפברואר 2019 (IST)
לדעתי אני סבור שמה שהצגת הוא מה שחפצתי בו אם כי אני לא מבין איך מכמסת בתוכה את הדרך לחישוב שארית שתיארתי. -- הודעה זו הושארה על ידי אנונימי/ת

טוסט[עריכת קוד מקור]

רציתי לדעת האם יש סוגים רשמיים של טוסטים, זאת אומרת, למשל - אם ניקח שקשוקה - יש מזה כמה סוגים, - יש קלאסי, יש בלקני, יש תרד, האם גם בטוסט יש כמה סוגים, או שלכל שף יש את הטוסט שלו בלי שזה יהיה בקטגוריה רישמית

נגזרות של פונקציות[עריכת קוד מקור]

אם ניקח פונקציה כדוגמת ונגזור אותה, ואז נגזור את הנגזרת שלה, ואז נגזור את הנגזרת של הנגזרת, וכן הלאה, בסופו של דבר נקבל באחת הנגזרות אפס.

לעומת זאת, אם ניקח פונקציה כדוגמת או כדוגמת ונבצע גזירה ועוד גזירה, וכן הלאה, נוכל להמשיך בכך עד אינסוף בלי שאף נגזרת תתאפס.

  1. האם קיימות עוד פונקציות חוץ מפונקציות אקספוננט, לוגריתם, חלוקה ב-x ומפונקציות טריגונומטריות שבהן ישנה אפשרות של "גזירה אינסופית"?
  2. האם ישנו סימן כלשהו לפונקציות שכאלו, שלפיו ניתן לזהות אותן?

תודה רבה, אביתר ג'שיחה • 12:48, 4 במרץ 2019 (IST)

מחלקת הפונקציות שאפשר לגזור אינסוף פעמים (בכל נקודה) בקבוצה X נקראת . אם מרשים מספר סופי של נקודות סינגולריות, כל פונקציה אלמנטרית אפשר לגזור אינסוף פעמים (כמעט בכל נקודה). מבין אלה, רק הפולינומים הם בעלי נגזרת המתאפסת לבסוף זהותית.
חבויות כאן שאלות של פתרון פורמלי למשוואות דיפרנציאליות לינאריות, שבהן עוסקת תורת גלואה הדיפרנציאלית (אנ') ובפרט תורת פיקאר-ווסיו (אנ'). עוזי ו. - שיחה 14:20, 4 במרץ 2019 (IST)

הסתברות[עריכת קוד מקור]

בהסתברות במרחב שאינו אחיד, הסיכוי יחושב לפי השכיחות היחסית כך: F/N.
F - frequency. ומה הפירוש המילולי של האות N? -- הודעה זו הושארה על ידי אנונימי/ת

זו דווקא הנוסחה להסתברות במרחב שבו ההתפלגות אחידה (אלא ש-F תוצאות מקובצות יחד ונספרות כאחד). במקרה זה N הוא גודל המרחב, גודל האוכלוסיה או גודל המדגם (בהתאם להקשר). עוזי ו. - שיחה 20:23, 5 במרץ 2019 (IST)
אם הצלחתי להבין, F מייצג ריבוי תוצאות זהות במרחב? אם אני מסיק נכון, זה אומר שאותו הריבוי מחייב כל תוצאה במרחב, לא? (למשל, קובייה עם 12 פאות, עליה נמצאים המספרים 1-6, כאשר כל אחד מופיע על שתי פאות). אני קצת מבולבל כי לא כך המרצה תיאר זאת. ובכל אופן, אני לא מצליח למצוא הסבר ברור ותמציתי למהו מרחב לא אחיד. אשמח לתשובה. אולי בצירוף דוגמה אם אפשר. אגב שאלתי הייתה את איזו מילה מייצגת האות N? כלומר האם יש לה משמעות בשפה האנגלית? אשמח למענה גם לגבי זה. תודה פרופסור -- הודעה זו הושארה על ידי אנונימי/ת
לדוגמא: מרחב התוצאות בהטלת זוג קוביות הוא בעל התפלגות אחידה (עם N=36 אפשרויות; N הוא סימון מקובל למספר טבעי). ההסתברות שסכום הקוביות הוא 10 היא 3/36, משום שיש F=3 דרכים לקבל 10 כסכום.
"מרחב התפלגות לא אחיד" הוא מרחב התפלגות שאינו אחיד. לדוגמא, שווה בנפשך מטבע בן שני צדדים, המעוקם באופן כזה שההסתברות שלו ליפול על צד אחד היא חצי שורש 2. זו דוגמא להתפלגות לא אחידה, שאי אפשר להציג כמנה של שני שלמים. עוזי ו. - שיחה 10:06, 6 במרץ 2019 (IST)
מעולה. תודה רבה! -- הודעה זו הושארה על ידי אנונימי/ת

השכלתה של אביבה קרינסקי[עריכת קוד מקור]

שאלתי זאת בדף השיחה של הערך לפני שנתיים ולא ענו לי. לפי אתר רדיו הר הצופים היא פרופסורית. לפי ויקיפדיה היא דר'. איך אפשר לדעת מה תוארה של הגברת? אני מהנייד ולא יודעת איפה הטילדות. שמי שירי2000

כל פרופסור באקדמיה בישראל נושא את התואר האקדמאי דוקטור. Corvus‏,(Nevermore)‏ 13:08, 12 במרץ 2019 (IST)
יש מקרים (נדירים) של מינוי כפרופסור למי שאינו בעל תואר PhD או MD. עוזי ו. - שיחה 13:55, 12 במרץ 2019 (IST)
כן, אבל האם כל דוקטור הוא פרופסור? אני רוצה לדעת אם היא הגיעה לדרגת פרופסורה. שירי2000
בוודאי שלא כל דוקטור הוא פרופסור. אני לא יודע דבר לגבי אביבה קרינסקי; לא הייתי רואה בזה אסמכתא לדרגה אקדמית. עוזי ו. - שיחה 20:46, 12 במרץ 2019 (IST)

אז איך אדע? שירי2000

פיצה[עריכת קוד מקור]

האם יש עוד סוגים רשמיים של פיצה חוץ מפיצה נפוליטנה, כי פיצה מרינדה למשל - זה בעצם רק גרסה של פיצה נפוליטנה, אני אשמח לדעת אם יש עוד סוגים לא גרסאות

פיצה ביאנקה (כרגע יש רק פסקה בערך פיצה) היא שונה - מבוססת למעתים על רוטב שמנת ולא על רוטב עגבניות ('ביאנקה' משמעו לבנה) או סתם ללא רוטב עגבניות. יש גם פיצה אל טליו (הגרסה שלהם ל"על הסכין") שמיוצרת במלבנים ונמכרת לפי מטר, ונעשית עבה יותר אם אינני טועה. ישנן פיצה נפוליטנה שמכונה כך ברומא - בנאפולי היא מכונה 'רומאנה'). באיטלקית יש להם שמות שונים לפיצות שבשאלות מכונות 'גרסאות' שונות - פיצה וינאית (עם נקניק גרמני), פיצה קפריקוזה (ארטישוק והאם), ופיצה ארבע גבינות. פיצה אלה קאזלינגה ("פיצת עקרת הבית") היא שיטת טיגון שאמורה להיות פשוטה יותר. כל אלה ועוד גרסאות רבות אחרות, איטלקיות ועולמיות, מופיעות ב. Eyalweyalw - שיחה 12:00, 14 במרץ 2019 (IST)

באיטליה יש סוגים מוגדרים של פיצה במסעדות ולפעמים מספר "פנטזיות" של הטבחים או ואריאציות לסוגים מוכרים. לרוב מה שנמכר בישראל (פיצה אמריקאית) מתקבל בזלזול רב באיטליה ורעיונות כמו להוסיף דברים על הפיצה לפי הזמנה שמור לתיירים (או למביני עניין). פיצה עם תירס מעורר התפרצות צחוק. דוגמאות מוכרות לפיצות מוגדרות הם: מרגריטה (Pizza Margherita), מרינרה (Pizza marinara), ארבע גבינות (Pizza quattro stagioni), קפריצ'וזה (Pizza capricciosa), פוליזה (Pizza pugliese), פרוצ'יטו (Pizza Prosciutto), נפולי (Pizza Napoli) ועוד. לדוגמה כאן יש תפריט של מסעדה איטלקית בשווייץ, בה מוגשים הפיצות המוכרות. Corvus‏,(Nevermore)‏ 19:29, 15 במרץ 2019 (IST)

מה יותר מהיר או ארנבת?[עריכת קוד מקור]

אני תוהה לעצמי כבר זמן מה.. מה יותר מהיר או ארנבת? תודה מראש.

בבירור או יותר מהיר. !Σiη Stαlεzε אילן שמעוני - שיחה 12:01, 25 במרץ 2019 (IST)
השאלה היא: "מה יותר - "מהיר" או "ארנבת"?". אז ארנבת. חזרתישיחה 13:30, 13 ביולי 2019 (IDT)

תאוריית אנטי מהירות?![עריכת קוד מקור]

למדתי את תורת היחסות של איינשטיין ולא הבנתי משהו אחד: אם התכווצות האורך באמת קיימת -והיא קיימת- אז אם ניקח שעון שעובד על קרן אור שמוחזרת בין שני מראות - ונניח אותו אנכית לאורך של חללית שנעה, מה שיגרום שהמרחק בין המראות יהיה קטן יותר בגלל התכווצות האורך, אז הזמן יהיה מהיר יותר? מה שמעלה אפשרות תאורטית של אנטי מהירות, שתגרום למי שטס להזדקן מהר יותר? זה לא יכול להיות, כי יחד עם האנטי מהירות יש גם את המהירות ושניהם מבטלים אחד את השני, אבל לפי זה יתכן שיוכלו לטוס במהירות האור מבלי שתקרה התרחבות הזמן על ידי פעולה טכנית של סיבוב השעון אנכית לכיוון שאליו החללית נעה?! משהו פה לא כל כך מובן לי.אלי משי - שיחה 12:31, 7 באפריל 2019 (IDT)

המרחקים מתקצרים מנקודת המבט של צופה חיצוני, אבל מבחינת קרן האור המוחזרת בין המראות לא השתנה שום דבר. עוזי ו. - שיחה 14:25, 7 באפריל 2019 (IDT)

תגובה מאת אלי משי: דווקא כן השתנה, כי קרן האור נשארת באותה מהירות ואינה יחסית למרחב המתכווץ סביבה!אלי משי - שיחה 22:54, 7 באפריל 2019 (IDT)

במקרה שאתה מתאר לא יחול שום שינוי במרחק בין המראות, מפני שהתנועה יחסית לצופה מבחוץ היא בזווית ישרה לכיוון קרן האור. בברכה !Σiη Stαlεzε אילן שמעוני - שיחה 23:33, 7 באפריל 2019 (IDT)

אם מישהו יכול להסביר לי יותר באריכות זה יעזור לי מאוד.אלי משי - שיחה 10:58, 8 באפריל 2019 (IDT)

אין מרחקים אבסולוטיים. תנועה מהירה אינה גורמת להתכווצות אורך. מה שמשתנה הוא האורך כפי שהצופה מודד אותו. בחללית המהירה שלך, צופה חיצוני מודד מרחקים קצרים, ואילו טייס החללית לא רואה שינוי. עוזי ו. - שיחה 11:16, 8 באפריל 2019 (IDT)
תוספת - ההתקצרות היא רק בכיוון התנועה. הצופה מבחוץ יראה את החללית עם אורך קצר יותר, אבל רוחב זהה למה שנמדד במנוחה.
אני חושד שאחד הדברים שמבלבלים אותך הוא ההבדל בין יחסות פרטית ליחסות כללית. אלו תאוריות שונות לגמרי. ביחסות כללית באמת יש מרחב שמתעקם ומתכווץ ומתנהג כמו גוש גומי. יחסות כללית היא תאוריה שדורשת מתמטיקה מתקדמת וגורמת למיטב ידיעתי לכאב ראש נוראי לכל מי שלומד אותה, לא משנה כמה הוא אינטיליגנט. יחסות פרטית, לעומת זאת, מתעסקת רק בהבדל במדידת זמנים ומרחקים בין מערכות שנעות אחתה ביחס לשנייה. את הבסיס של יחסות פרטית ניתן ללמוד עם מתמטיקה ברמת 5 יחידות לימוד תיכוניות. היא מבלבלת בתחילה, אבל די מהר הבילבול מתפוגג. בברכה !Σiη Stαlεzε אילן שמעוני - שיחה 12:06, 8 באפריל 2019 (IDT)

שאלה באקסל[עריכת קוד מקור]

שלום,
נניח יש לי באקסל 100 ערכים בשורה מסוימת (נניח A1:A100), ואני רוצה להעתיק מתוכם את כל הערכים שלא מופיעים בB1:B20. נגיד שאני רוצה שהתוצאה תופיע בתאים C1:C80. איך עושים את זה? בבקשנה רק ע"י שימוש בנוסחאות בתוך האקסל.
תודה רבה

מסתבר שאתה יודע מראש שכל הערכים ב-B מופיעים ב-A, ושכל ערכי A שונים זה מזה.
הדרך הקלה היא לאחד את הרשימות, למיין ולספור.
אבל יתכן שאתה רוצה שהנתונים יופיעו בגליון בלי לבצע שום פעולה של המשתמש. לשם כך תצטרך למיין את B, ולהשתמש בפקודה VLOOKUP. עוזי ו. - שיחה 18:58, 7 באפריל 2019 (IDT)

מה יותר כבד: סלע או ברזל?[עריכת קוד מקור]

שאלה בכימיה: המשקל המולקולרי של SiO2 הוא 60 ושל ברזל הוא 55.8. עם זאת, ליטר ברזל שוקל כ-7.8 קילו וליטר סלע שוקל כ2.1 קילוגרם. איך זה? שואל השאלות - שיחה 13:30, 18 באפריל 2019 (IDT)

כי ישנו גם הפקטור - איזה נפח תופסת המולקולה והאטום. מכיוון שהמולקולה תופסת נפח גדול יחסית בעוד אטומי הברזל ארוזים בצפיפות כשכל אטום תופס נפח קטן הרבה יותר, נובע שהמשקל ליחידת נפח של ברזל גבוה יותר. !Σiη Stαlεzε אילן שמעוני - שיחה 14:10, 18 באפריל 2019 (IDT)
אוסיף גם שהמשקל המולקולרי לא רלוונטי כשמשווים נפחים אלא כאשר משווים מולים (כמות חומר הנמדדת במספר החלקיקים). כאשר משווים נפחים הפרמטר החשוב הוא צפיפות מסה הנמדדת ביחידות מסה חלקי נפח (למשל ). – ד"ר MathKnight (שיחה) 19:56, 18 באפריל 2019 (IDT)

נוסחת נסיגה[עריכת קוד מקור]

בהינתן נוסחת הנסיגה הבאה:

מהו ? (אני מתעניין רק בהערכה האסימפטוטית של זה). עברית - שיחה 20:40, 18 באפריל 2019 (IDT)

אני מאמין שהמינימום מתקבל כאשר , ומשם כבר קל לפתור את נוסחת הנסיגה. אולם אני לא מצליח להוכיח שהמינימום אכן מתקבל במקרה זה. עברית - שיחה 18:49, 6 במאי 2019 (IDT)

שאלה בסטטיסטיקה (תאנוס)[עריכת קוד מקור]

תאנוס מחליט להרוג חצי מהאוכלוסייה בכדור הארץ. הוא בוחר באקראי ובאופן אחיד מחצית מאוכלוסיית העולם (7.7 ביליון). מה הסתברות לכך שפחות ממחצית מאוכלוסיית ישראל (8.7 מיליון) תושמד? 213.55.184.241 00:52, 27 באפריל 2019 (IDT)

חצי. ומה הסיכוי שפחות משתי חמישיות? אפס. עוזי ו. - שיחה 00:21, 1 במאי 2019 (IDT)
אם היו 37 אנשים בעולם, ו-6 מתוכם במדינת ישראל והוא היה מחליט להרוג 31/37 מכל העולם, הסיכוי שכל אוכלוסיית ישראל תנצל היה 1 ל-2,712,248 כמו הסיכוי לזכות בפרס השני בלוטו. עוזי ו. מאיזה סדר גודל מחשיבים את זה כ-0?--213.8.151.212 09:22, 6 בינואר 2020 (IST)
אתה רוצה קירוב טוב יותר להסתברות שיהרגו פחות משתי חמישיות מאוכלוסיית ישראל (שהיא כאמור 8.7 מיליון)? בערך עשר בחזקת מינוס 78,000. עוזי ו. - שיחה 10:46, 6 בינואר 2020 (IST)
התכוונתי לשאול מאיזה מספר מעגלים ל-0. האם גם 10 בחזקת מינוס 100 כמו במחשבונים? האם אחד ל-10000 כבר מעגלים ל-0?--213.8.151.212 15:10, 6 בינואר 2020 (IST)

תאוצה של כדורגל[עריכת קוד מקור]

לאיזו מהירות יגיע כדורגל מנופח לאחר נפילה של עשרה מטרים (בהתחשב בהתנגדות האוויר)? ומה תהיה המסה שלו בסוף הנפילה? מיכאל.צבאןשיחה • כ"ו בניסן ה'תשע"ט • 22:15, 30 באפריל 2019 (IDT)

המסה שלו לא תשתנה. ביחס למהירות, הגרר (כוח) הפועל על הכדור הוא, בקירוב, Ns^2/m^2 בכיוון מעלה. זה אומר שהגרר בסוף הנפילה הוא בערך חמישית מכוח הכבידה הפועל על הכדור. אם אתה רוצה חישוב מדוייק, תצטרך לפתור משוואה דיפרנציאלית. אם אתה מחפש תשובה מקורבת, זה יהיה באזור ה 13 מטרים לשניה. משה פרידמן - שיחה 22:37, 30 באפריל 2019 (IDT)
תודה. מה יהיה הלחץ שהכדור יפעיל על הרצפה? מיכאל.צבאןשיחה • כ"ו בניסן ה'תשע"ט • 09:52, 1 במאי 2019 (IDT)
אני לא יודע לומר מה יהיה הלחץ. להבנתי זה תלוי בכדור, ובמשטח שהכדור נופל עליו. כמו כן הלחץ איננו אחיד אלא משתנה לאורך פרק הזמן בו יש מגע בין הכדור לרצפה. משה פרידמן - שיחה 20:18, 1 במאי 2019 (IDT)

האם ממוצע השגיאות הוא שהשגיאה על הממוצע?[עריכת קוד מקור]

אם יש לי 100 מדידות עם שיגואות מדידה שונות ואני מחשב את הערך הממוצע: מה השגיאה על הממוצע? האם אני יכול לחבר את כל השגיאות ולחלק ב-100? שואל השאלות - שיחה 16:00, 2 במאי 2019 (IDT)

לא. יש בזה פרטים, אין תשובה כללית. אבל ממוצע השגיאות זה בוודאי לא נכון - גם לא בקירוב. משה פרידמן - שיחה 16:11, 2 במאי 2019 (IDT)
אני מניח ש"שגיאת מדידה" היא סטיית התקן. חלק את השורש של ממוצע ריבועי השגיאות בעשר. עוזי ו. - שיחה 19:40, 2 במאי 2019 (IDT)
מה מקור הנוסחה? אם הבנתי אותך נכון, אז החישוב הוא: . כלומר סוכמים על ריבועי השגיאות, מחלקים גדול המדגם, מוציאים שורש. ואז שוב מחלקים בשורש גדול המדגם. מאיפה זה נובע? שואל השאלות - שיחה 14:32, 3 במאי 2019 (IDT)
ראה משפט הגבול המרכזי. דניאל 15:35, 3 במאי 2019 (IDT)
אם כי אתה זקוק בעצם לתוצאה חלשה יותר. אם בלתי תלויים, אז בזכות שונות#תכונות השונות (השונות היא ריבוע סטיית התקן):
ועכשיו תוציא שורש. דניאל 16:04, 3 במאי 2019 (IDT)
דניאל, הנוסחא שלך מתאימה אך ורק למצב בו כל השגיאות זהות בגודלן. משה פרידמן - שיחה 21:41, 6 במאי 2019 (IDT)

אני עונה לטובת אלו שעושים מדע ולא מתמטיקה:

  1. ראשית, שגיאות לא מנתחים רק עם נוסחאות. אף פעם. צריך להסתכל על המדידות, להבין אותן, להבין את התפלגות השגיאות.
  2. יש לוודא שהשגיאות אכן בלתי תלויות, סימטריות, ופיזיקליות. (למשל, שטווח השגיאה לא מאפשר מסה שלילית).
  3. כדי להשתמש בנוסחא למעלה, צריך להפריד את השגיאה הסטטיסטית מהשגיאה הסיסטמטית. השגיאה הסיסטמטית מקבלת טיפול בנפרד, ודורשת הבנה של המערכת. לשם המחשה, לא ניתן על ידי מאה מדידות בסרגל לקבל דיוק של עשירית מילימטר.
  4. לבסוף, מוטב לוודא שהתפלגות השגיאות שלך משקפות התפלגות כי-בריבוע. אחרת, מיצוע השגיאות בנוסחא שהובאה למעלה שגוי.

באופן מעשי, לאחר שמבינים את השגיאות ומחליטים לטפל בהם כשגיאה סטטיסטית בלתי תלויה, הדרך המומלצת היא להשתמש בכלי נומרי להתאמת פונקציות שיודע להתחשב בשגיאות, ולהתאים את כל המדידות לפונקציה . הערך שיתקבל הוא הממוצע, והשגיאה עליו הוא השגיאה הממוצעת. אם הערך של כי בריבוע גדול מדי, יש "לנפח" את השגיאות באופן מלאכותי כדי לקבל כי בריבוע מתאים. משה פרידמן - שיחה 21:13, 6 במאי 2019 (IDT)

ועוד משהו ששכחתי. הנוסחה שהובאה למעלה רלוונטית למצב בו כל השגיאות זהות. במצב בו השגיאות לא זהות, הממוצע הוא:
והשגיאה תהיה:
. משה פרידמן - שיחה 21:50, 6 במאי 2019 (IDT)
לא נכון. הנוסחה שעוזי הביא (ואני רק כתבתי במפורש) נכונה תמיד, לכל התפלגות (לא קשור לכי בריבוע) וגם לשגיאות מגדלים שונים. התנאי היחיד הוא שהמדידות יהיו בלתי מתואמות (מה שתמיד נכון אם הן בלתי תלויות). הממוצע עצמו הוא אומד לשגיאה הסיסטמטית, הנוסחה של עוזי אומדת את השגיאה הלא סיסטמטית. לא הבנתי את הנוסחה שאתה הבאת, הוא ביקש ממוצע ולא ממוצע משוקלל. דניאל 22:58, 6 במאי 2019 (IDT)
חוץ מזה, אפשר בהחלט לאמוד עם סרגל (של מילימטרים) גודל של עשירית מילימטר עם המדגם גדול מספיק. העיגול בסך הכל מגדיל את השגיאות, אבל הן עדיין קטנות עם המדגם. דניאל 22:58, 6 במאי 2019 (IDT)
הכי טוב לבדוק דברים פשוטים. לפי הנוסחה שהבאת אם יש לי מדידה אחת עם שגיאה של 1, ואז אני מוסיף עליה מדידה נוספת עם שגיאה של 3. לפי הנוסחה שלך השגיאה הכוללת היא:
זה, כמובן, לא ייתכן. ביחס לכי בריבוע ולממוצע המשוקלל, הבהרתי שאני מתייחס למדע ולא למתמטיקה. ממוצע על אוסף מדידות עם שגיאה לא אחידה (כמו בשאלה) צריך להיעשות עם שקלול. זו פשוט טעות לעשות ממוצע ישיר. הצורך במבחן כי-בריבוע נובע מכך שבמקרה הרגיל הערכת השגיאה הבודדת שגויה, ולכן נכון להשתמש בהתפלגות השגיאות כדי לשפר את הערכת השגיאה. אני לא משוכנע שהבנתי מה אתה כותב ביחס לשגיאות הסיסטמטיות, אבל בוודאי שלא ניתן להחיל את הנוסחאות שהובאו למעלה על שגיאות סיסטמטיות, מהטעם הפשוט שהם אינן בלתי תלויות (כמעט תמיד). לגבי הסרגל האמירה שלך תמוהה ביותר. אתה חושב שאתה יכול למדוד גודל של שערה אנושית בעזרת סרגל? משה פרידמן - שיחה 23:21, 6 במאי 2019 (IDT)
התשובה ה"מדעית" והתשובה ה"מתמטית" הן בכל זאת אותה תשובה. השאלה היתה "...אני מחשב את הערך הממוצע: מה השגיאה על הממוצע", והתשובה היא כפי שדניאל כתב. באותה עת, צריך לומר לשואל: אל תחשב את הממוצע. האומד האופטימלי לממוצע במקרה הזה (אומד הנראות המקסימלית, שהוא גם UMVUE) הוא הממוצע המשוקלל, באופן פרופורציונלי הפוך לשונויות. השונות שלו אינה הממוצע של השונויות חלקי n, אלא הממוצע ההרמוני שלהן חלקי n. עוזי ו. - שיחה 00:52, 7 במאי 2019 (IDT)
אני לא מתווכח עם זה. רק אומר שמי שיעריך את השגיאה בדרך שהובאה בתחילה יקבל תשובה לא רלוונטית למה שהוא רוצה לדעת, קרי, מהי השגיאה הכוללת של המדידה שלו. משה פרידמן - שיחה 03:26, 7 במאי 2019 (IDT)
אז כנראה שלא הבנת את עוזי. מי שיעריך את השגיאה כך יקבל את התשובה הנכונה בדויק לשאלה מה השגיאה של הממוצע שחישב. אכן אם יש מדידה אחת עם שגיאה 1 ומדידה שנייה עם שגיאה 3, השגיאה של ממוצע המדידות היא השורש של (10 חלקי 4). מה הבעיה עם זה? דניאל 14:39, 11 במאי 2019 (IDT)
הבעיה היא שהוספת מדידה (שאיננה סותרת את הערך הידוע) לא יכולה להקטין את רמת הוודאות ביחס לגודל הנמדד. זה לא תרגיל בחישוב ממוצעים, אלא מדידה. המטרה של מדידה היא לדעת מה גודלו של הגודל הנמדד. מדידה נוספת (שאיננה סותרת) לא יכולה להקטין את רמת הוודאות. ככה לא עושים מדע. יתרה מכך, גם אם יש לך אוסף של מדידות עם שגיאות שונות, והשגיאה הכוללת על הממוצע לפי הנוסחה שלך תהיה קטנה יותר מכל אחת מהשגיאות בנפרד, הערכת השגיאה שהנוסחה שלך מספקת איננה ההערכה הנכונה על אי הוודאות ביחס לגודל הנתון. זאת, משום שהממוצע החשבוני איננו הגודל המתמטי הרלוונטי לחישוב הגודל הפיזיקלי, אלא הביטוי אותו הבאתי לעיל, בהינתן ההנחות שכתבתי למעלה. שוב, תחשוב פשוט. נניח שאסטרונומים מדדו את המרחק לכוכב מסויים כ 1000 שנות אור עם שגיאה של שנת אור אחת, ועכשיו הגיע אסטרונום נוסף ומדד את המרחק כ 500 שנות אור עם שגיאה של 2000 שנות אור. האם לדעתך השגיאה על המרחק תגדל? האם לדעתך יש להעריך את המרחק לכוכב כ 750 שנות אור עם שגיאה של כ 1400 שנות אור? משה פרידמן - שיחה 05:23, 12 במאי 2019 (IDT)

משפט פיק[עריכת קוד מקור]

לא ברור לי משהו. לפי מה שהבנתי יש לבנות רשת קרטזית כך שכל קדקוד של המצולע יושב על נקודה בעלת ערך שלם. חשבתי על מלבן שהיחס בין צלע ארוכה לקצרה הוא אירציונלי (נאמר שורש 2), לא נראה לי שאפשר לבנות עבורו רשת קרטזית כזו. אז מה בעצם ערך המשפט? !Σiη Stαlεzε אילן שמעוני - שיחה 14:09, 5 במאי 2019 (IDT)

(למה כאן ולא בדף השיחה של הערך?)
משפט פיק נותן נוסחה אלגנטית לחישוב השטח של מצולע שהקודקודים שלו מונחים על נקודות הסריג (הנקודות בעלות ערכים שלמים). הוא אכן לא חל על כל מצולע. עוזי ו. - שיחה 14:28, 5 במאי 2019 (IDT)
כי רציתי לוודא שתראה את השאלה... כל ערכי המתמטיקה ברשימת המעקב שלך? !Σiη Stαlεzε אילן שמעוני - שיחה 16:23, 5 במאי 2019 (IDT)
רק אלו שנגעתי בהם פעם (כלומר כן...) עוזי ו. - שיחה 16:24, 5 במאי 2019 (IDT)
שאלות המשך: בהינתן מצולע, א. איך ניתן לדעת אם אפשר לבנות עבורו רשת קרטזית כך שכל קודקודיו מונחים עליה? ב. אם ניתן, כיצד לבצע בנייה של רשת מתאימה ולהניח עליה את המצולע כך שכל הקודקודים ישבו על נקודת רשת? ולגבי התשובה שלך על רשימת המעקב... Im-yahoo.svg. אעתיק את הדיון פה לדף השיחה של הערך, ואוסיף משפט הסתייגות בערך עצמו. !Σiη Stαlεzε אילן שמעוני - שיחה 17:09, 5 במאי 2019 (IDT)
במשפט ההסתייגות אטוסיף "מאחר ומספר המצולעים שניתן לחשב את שטחם באמצעות המשפט הוא בן מנייה, בעוד שמספר המצולעים האפשרי הוא עוצמת הרצף, הסיכוי של מצולע אקראי להיות פתיר באמצעות משפט פיק הוא אפס". בבקשה אשר שאני לא מדבר שטויות... !Σiη Stαlεzε אילן שמעוני - שיחה 17:14, 5 במאי 2019 (IDT)
א. זו שאלה בגאומטריה חישובית. המיקום של הצורה במישור נקבע לפי שתי נקודות, ולכן הייתי מזיז אותה כך שנקודה אחת יושבת בראשית הצירים, ומסובב בכל פעם נקודה אחרת אל ציר ה-x, כדי לבדוק האם כל היחסים נעשים רציונליים (מן הסתם אפשר לעשות חישוב מהיר כדי למצוא את הזוויות הרלוונטיות).
ההסתייגות לא מתאימה לערך. השיטה לא נועדה לחישוב שטחים של מצולעים באופן כללי, אלא דווקא על נקודות סריג. העובדה שמשפט פיק אינו מועיל בקציר חיטה או שיגור לווינים לירח אינה רלוונטית. עוזי ו. - שיחה 20:03, 5 במאי 2019 (IDT)
מהערך אפשר להבין שזה תופס עבור כל מצולע. למעשה השאלה כאן באה בעקבות ויכוח שהיה לי היום עם מישהו על זה בדיוק. אבל אני לא אשרבב את אפי לערכי מתמטיקה. !Σiη Stαlεzε אילן שמעוני - שיחה 23:04, 5 במאי 2019 (IDT)
שיפצתי קצת את המשפט הפותח, כדי שיהיה ברור שהמשפט מוגבל למצולעים "שלמים". עוזי ו. - שיחה 23:38, 5 במאי 2019 (IDT)

שטח מקסימלי של פוליגון על קבוצת קודקודים[עריכת קוד מקור]

היי, אם נתונה לי קבוצת קודקודים P ואני רוצה למצוא עליהם פוליגון פשוט ששטחו מקסימלי או פוליגון פשוט ששטחו מינימלי ועובר בכל הקודקודים - איך עושים את זה (בצורה שאיננה חישוב גס)? יםשיחה • ב' באייר ה'תשע"ט • 09:47, 7 במאי 2019 (IDT)

ההתאמה נעזרת גם בתורת המוטיבים, שחלקים גדולים ממנה עדיין משוערים בלבד.[עריכת קוד מקור]

תורת המוטיבים באנגלית בבקשה. 129.69.140.138 13:59, 15 במאי 2019 (IDT)

theory of motives. עוזי ו. - שיחה 17:39, 15 במאי 2019 (IDT)
תודה. http://www.its.caltech.edu/~matilde/MotivesESI2009.pdf

הגדרה של קילוגרם[עריכת קוד מקור]

בכתבה הזו עכשיו זה רשמי: השתנתה ההגדרה של קילוגרם כתוב שקילוגרם שקול לזרם. לא כל כך הבנתי למה זה מדוייק יותר? השדה המגנטי לא קשור לטיב המתכת לטמפרטורה ומספר הסלילים? איך זה יוצא יותד מדוייק ממשקל גליל מתכת? 31.210.177.117 21:31, 20 במאי 2019 (IDT)

ככלל, ynet אינו מקור מוצלח לידיעות מדעיות. ההגדרה החדשה התבבסה על קביעת ערכו של קבוע פלאנק באופן מדוייק, כאשר זו בתורה התבססה על סדרת מדידות שונות, שכללו משקל מדוייק, אבל גם שימוש בצומת ג'וזפסון. לשאלה גופא - השדה המגנטי מזרם אינו תלוי בטיב המתכת. כל עוד הזרם ידוע היטב, את השדה המגנטי אפשר למצוא על ידי חוק אמפר, כמעט בלי שום תלות בטיב המתכת עצמה. מה שכן עשוי להיות רלוונטי הוא, למשל, הצורה הפיזית של התיל, שאותה יש לייצר בדיוק גבוה - אבל גם זה אפשרי. Eyalweyalw - שיחה 09:31, 21 במאי 2019 (IDT)

אינטגרל vs. סיגמה[עריכת קוד מקור]

באחת מן המשימות באחת מן העונות של המירוץ למיליון, נדרשו הזוגות לבנות סוג של פירמידות משולשות "שוות צלעות" מגביעי שמפניה, כך שבכל "מקצוע" של הפירמידה יהיו שנים עשר גביעים. חישוב כמות הגביעים שנדרשים לשם כך, נובע מסכום של סכום סדרות חשבוניות פשוטות, ונותן, . כשנותנים נוסחה כללית לחישוב כמות הגביעים שנדרש לשם בניית פירמידה משולשת כזו, כפונקציה של כמות הגביעים בכל מקצוע (), מקבלים, . ניסיתי למצוא נוסחה שאינה דורשת לסכום ידנית כמות ענקית של סכומי סדרות חשבוניות, בצעתי באקסל רגרסיה פולינומיאלית, וקיבלתי, (ובאמת, אם מציבים , מקבלים 364). אם במקום סכום בדיד, סיגמה, היה כאן סכום רציף, אינטגרל, , אינטגרציה הייתה נותנת .

ועכשיו השאלות שלי הן,

  1. האם יש דרך לחזות את הנוסחה שמתקבלת מהסיגמה, מתוך הבעיה עצמה, בלי להכניס את התוצאות של סכום הסכומים לתוך רגרסיה פולינומיאלית?
  2. האם יש דרך לחזות את ההבדלים שבין הסכום הרציף לסכום הבדיד, בבעיה הנוכחית?
  3. האם יש מקרים שבהם הסכום הרציף שווה לסכום הבדיד?

רוב תודות, אביתר ג'שיחה • 10:34, 29 במאי 2019 (IDT)

  1. כדי לחשב את הנוסחה אתה יכול להשתמש בנוסחה לסכום של ריבועים: (הוכחה פשוטה באינדוקציה).
  2. באמצעות הנוסחה המלאה אתה יכול לחשב בקלות את ההפרש בין הסכום והאינטגרל: .
  3. אם תציב בנוסחה שהתקבלה תראה שהתשובה היא לא.
בברכה, Easy n - שיחה 13:19, 29 במאי 2019 (IDT)
קודם כול, תודה.
  1. הבנתי. תודה.
  2. אוקיי.
  3. שאלתי על המקרה הכללי: האם יש פונקציות שניתן לבצע עליהן אינטגרציה או סכום בדיד ולקבל אותה תוצאה? כלומר, האם יכול להתקיים, ? כשאני חושב על זה עכשיו, זה בעצם מתקיים בפונקציה קבועה, או בפונקציית מדרגות שבהן המדרגות ב-x-ים שלמים. אביתר ג'שיחה • 16:37, 29 במאי 2019 (IDT)
כל סכום מהצורה הוא למעשה האינטגרל של פונקציית מדרגות שהערך שלה בכל הקטע החצי פתוח הוא . לכל פונקציה מונוטונית עולה, האינטגרל על הפונקציה יהיה קטן או שווה לסכום על הערכים של הפונקציה עבור השלמים בלבד, כאשר השוויון יושג עבור פונקציית מדרגות. ההפך נכון לפונקציה מונוטונית יורדת. לא מסובך לבנות פונקציה שתקיים את מה שאתה רוצה, אבל אם לא מדובר בפונקציית מדרגות, היא לא יכולה להיות מונוטונית. למשל: ,תקיים את הדרישה בקטע עבור זוגי. בברכה, Easy n - שיחה 17:31, 29 במאי 2019 (IDT)
הסכום והאינטגרל קרובים זה לזה (במיוחד כאשר מדובר בפונקציה מונוטונית). הקשר הזה הוא לדוגמא הבסיס למבחן האינטגרל להתכנסות של טורים. עוזי ו. - שיחה 17:53, 29 במאי 2019 (IDT)

מזגן אינוורטר[עריכת קוד מקור]

אין ערך על מזגן אינוורטר, יש רק הפניה לפיסקה במיזוג אויר ואין שם עדיין פיסקה כזו: איך עובד מדחס אינוורטר, ומה בדיוק ההבדל בינו לבין מדחס רגיל, ולמה בזרם חילופין אי אפשר להגביר ולהנמיך את העוצמה ובזרם ישיר כן. תודה רבה למומחה. מ.י.ש.הו 0 - שיחה 14:28, 24 ביוני 2019 (IDT)

מיון עולם הטבע (להעביר לוק:יל?)[עריכת קוד מקור]

- הועבר לדף ויקיפדיה:ייעוץ לשוני#מיון עולם הטבע (להעביר לוק:יל?)

חירבון וחורבן[עריכת קוד מקור]

האם חירבון וחורבן באים מאותו השורש?

אאז"נ לא. חורבן בא מהשורש ח.ר.ב. חירבון הוא סלנג שמבוסס על המילה הערבית חרא. שאלות מסוג זה יש לשאול בויקיפדיה:ייעוץ לשוני. !Σiη Stαlεzε אילן שמעוני - שיחה 15:35, 14 ביולי 2019 (IDT)
המילה חרא היא תנ"כית (למשל "לאכול את חראיהם", במלכים ב', יח כז), ולא שאולה מהערבית עברית - שיחה 09:36, 27 ביולי 2019 (IDT)
תודה על התיקון, על כל פנים היא אינה מהשורש ח.ר.ב. !Σiη Stαlεzε אילן שמעוני - שיחה

במתמטיקה, פוּנְקְצִיָּה (נקראת גם העתקה) היא התאמה, המשייכת לכל איבר בקבוצה אחת, איבר יחיד בקבוצה שנייה.[עריכת קוד מקור]

האם ידוע על נסיונות מוצלחים להסביר מהי פונקציה לילדי הגן וכיתות א ו-ב? 129.69.140.138 16:15, 16 ביולי 2019 (IDT)

זה עשוי להיות רלוונטי: [1]. עוזי ו. - שיחה 18:02, 16 ביולי 2019 (IDT)
תודה זה מה שחיפשתי
בטח, ההתאמה בין הילדים לתיק שלהם. השתמשתי בזה הרבה וזה עובד. !Σiη Stαlεzε אילן שמעוני - שיחה 19:40, 31 ביולי 2019 (IDT)
אגב, זה עבד גם עם ילדי גן, למרות שזה דרש ממני ים של סבלנות. !Σiη Stαlεzε אילן שמעוני - שיחה 19:42, 31 ביולי 2019 (IDT)
"ההתאמה בין הילדים לתיק שלהם" זו פונקציה חד־חד ערכית (מקרה פרטי של "התאמה, המשייכת לכל איבר בקבוצה אחת, איבר יחיד בקבוצה שנייה"). אולי יותר מתאים: לכל תלמיד יש תא אחד בלבד בארון הלוקרים (כי יש לוקרים ללא שימוש). חזרתישיחה 15:09, 22 באוקטובר 2019 (IDT)
או להתאים לכל ילד את השם שלו. ייתכנו שניים עם שם אחד ולא אחד עם שני שמות.--213.8.151.212 15:48, 2 בינואר 2020 (IST)

מה כבד יותר: לבה נוזלית או לבה מוצקה?[עריכת קוד מקור]

אם לבה מוצקה, איך הקרקע מוצקה (ולא שוקעת מתחת ללבה?). אם לבה נוזלית, אז פירוש הדבר הוא שהמים לא לבד?.--שלום1234321אפצישיחה • כ"ח בתמוז ה'תשע"ט 14:24, 31 ביולי 2019 (IDT)
בר, Meir138, יורם שורק, Orielno, Polskivinnik, Squaredevilבעלי הידע בכימיה?--שלום1234321אפצישיחה • כ"ח בתמוז ה'תשע"ט 15:49, 31 ביולי 2019 (IDT)

המים לא לבד כי יש עוד חומרים בהם המוצק צפוף פחות מהנוזל למשל צורן שצפיפותו כמוצק 2.32 גר' לסמ"ק וכנוזל 2.57 גר' לסמ"ק. לוחות הסלע עליהם אנו חיים אכן שוקעים פנימה בתנועה איטית מאוד אבל תמיד תהיה גם מגמה שתחשף ותתקשה. כדאי לקרוא בערך טֶקְטוֹנִיקַת הלוחות על התנועה הזו. יורם שורק - שיחה 17:18, 31 ביולי 2019 (IDT)
לבה נוזלית אינה נוזלית בשל מים, למעשה תכולת המים בה נמוכה מאד עד לא קיימת. לבה נוזלית היא פשוט סלע מותך. כפי שמתכת בחום גבוה מספיק עוברת למצב נוזלי. !Σiη Stαlεzε אילן שמעוני - שיחה 19:39, 31 ביולי 2019 (IDT)
שלום לא אמר שלבה נעשית נוזלית בגלל המים שיש בה. הוא התכוון לומר שאם לבה נוזלית כבדה יותר מלבה מוצקה, המים אינם בודדים בתכונה הזו של "האנומליה של המים", שצפיפות החומר בצורתו הנוזלית גבוהה מצפיפותו בצורתו המוצקה. על כך ענה לו יורם, שממילא, גם ללא הדוגמה של הלבה, מים אינם לבדם בתכונה הזו. אביתר ג'שיחה • 10:50, 5 באוגוסט 2019 (IDT)

מדד כמותי לפריקות של מספר[עריכת קוד מקור]

מקובל שישנם מספרים שיותר נוח להשתמש בהם כשרוצים לחלק יחידות גדולות ליחידות קטנות יותר. למשל, לפני המעבר של בריטניה ליחידות העשרוניות, בשילינג היו 12 פני. עד היום יממה מחולקת ל-24 שעות, ושעה ל-60 דקות. אלו מספרים שיש להם הרבה מחלקים ולכן נוח לעבוד איתם. כך למשל, חצי יממה, שליש יממה, רבע יממה, שישית יממה ושמינית יממה מהווים מספר שלם של שעות.

כבר זמן מה שאני חושב האם ניתן ליצור איזשהו מדד כמותי ל'נוחות העבודה' עם מספרים, שיצדיק למשל את האינטואיציה לגבי המספר 4 לעומת המספר 6 (6 נוח יותר מ-4). הערך על מספר פריק במיוחד נתן לי איזשהו רעיון. כדי למדוד את נוחותו של n ניתן לספור את כמות המחלקים הטבעיים שיש ל-n (למעט 1 ו-n עצמו), ולחלק כמות זו ב-n. ככל שכמות המחלקים של המספר גדולה יותר הוא נוח יותר לשימוש, ולכן במדד 'שלי' כמות זו נמצאת במונה, ומצד שני, ככל שהמספר גדול יותר הוא הולך ונעשה פחות נוח לשימוש (2,520 הוא בעל הרבה מחלקים, אך קשה להשתמש בו, לדוגמה), ולכן במדד 'שלי' המספר n נמצא במכנה. הרווחתי שבמדד שלי מספרים ראשוניים מקבלים נוחות של 0 (אין להם מחלקים מלבד עצמם ו-1), ובנוסף הרווחתי שהאינטואיציה של אנשים לגבי נוחות של מספרים נעשית מוצדקת: ל-4 יש רק מחלק אחד מלבד עצמו ו-1, ולכן הנוחות שלו היא של רבע; ל-6 יש שני מחלקים, ולכן הנוחות שלו גדולה יותר, שליש (2/6); גם ל-12 (שלו יש ארבעה מחלקים 2, 3, 4, 6), יש נוחות של שליש (4/12); ל-60 ישנם עשרה מחלקים (2, 3, 4, 5, 6, 10, 12, 15, 20, 30), אך הוא גדול יותר, ולכן הנוחות שלו יורדת לשישית. זוהי נקודת תורפה של המדד הזה, שכן, יוצא שהנוחות של 60 נמוכה מהנוחות של 4, ושהנוחות של 24 שווה לנוחות של 4, מה שלא כל כך 'מסתדר' עם האינטואיציה.

אני מניח שלא המצאתי את הגלגל, ולכן רציתי לדעת אם אכן עסקו בעניין הזה כבר, ואם ישנו מדד הדומה למדד הזה. אם כן, האם יכולים להיות למדד כזה עוד שימושים מלבד חיזוי של נוחות שימוש במספרים, נניח יצירה של גרף שבו x הוא n ו-f(x) הוא הנוחות של n, וניסיון לבדוק אם יש איזשהי מגמה שלפיה ניתן לחזות אם מספר יהיה ראשוני (=עם נוחות של 0) או פריק (=עם נוחות גדולה מ-0). אביתר ג'שיחה • 10:33, 5 באוגוסט 2019 (IDT)

אפשר להמציא מדדים שונים ל"חלקות של מספר". את מספר המחלקים של n מסמנים ב-d(n); אתה מציע להתבונן ביחס (למעשה , אבל הראשון עדיף). הזהות המשעשעת ביותר שעולה בדעתי בעניין זה היא לגבי פונקציית זטא של מספר המחלקים, ששווה לריבוע של פונקציית זטא של רימן: . זה מסתפק מידע שימושי על ההתנהגות של הטור שלנו בסביבות s=1. עוזי ו. - שיחה 13:28, 5 באוגוסט 2019 (IDT)
עוד עובדה מעניינת שקשורה לחלקות של מספרים גדולים: יהי a>1. הסיכוי לכך שכל המחלקים של מספר מסדר הגודל של x^a יהיו קטנים מ-x הוא . עוזי ו. - שיחה 13:40, 5 באוגוסט 2019 (IDT)

איך מחשבים שגיאה של ממוצע?[עריכת קוד מקור]

נניח הנתונים שלי הם . ואני שואל מה הממוצע?

את הממוצע עצמו קל לחשב. השאלה היא מה השגיאה על הממוצע? והאם היא תלויה בכמות המדידות?

האם כוונתך לסטיית תקן או מדד דומה (כמו טעות ריבועית ממוצעת)? יםשיחה • י' באלול ה'תשע"ט • 12:18, 10 בספטמבר 2019 (IDT)
לא יודע. מה הדרך המקובלת? מה שאני עושה זה משווה שתי סדרות ניסויים עם הרבה מדידות שונות (ושגיאות מדידה שונות) ואני רוצה להציג את התוצאה הממוצעת לכל סדרת ניסויים.
השאלה הזו נשאלה במעלה העמוד, ושם כתבתי את עמדתי. משה פרידמן - שיחה 12:46, 10 בספטמבר 2019 (IDT)
שים לב שהדיון הוא גם על חישוב הממוצע עצמו. משה פרידמן - שיחה 12:47, 10 בספטמבר 2019 (IDT)
זאת באמת שאלה קשה שצריך דיון גדול? חשבתי שזה בטח איזו נוסחה אחת, שאולי כבר מותקנת באקל.
ניתוח נתונים ושגיאות זה תחום מאוד מורכב במדעים הנסויים. לפעמים יותר מורכב מהניסוי עצמו. יחד עם זאת ייתכן כי במקרה שלך אפשר להשתמש בנוסחא שהבאתי שם. בכל מקרה זו תהיה טעות חמורה לעשות ממוצע רגיל בהתעלם מהשגיאה. משה פרידמן - שיחה 18:14, 10 בספטמבר 2019 (IDT)
האם ידוע לך שם לנסחה? האם היא קיימת באקסל? 46.140.97.218 00:37, 11 בספטמבר 2019 (IDT)
אנסה לסכם את הדיון הארוך (והמעניין) שנוהל למעלה. החישוב הנאיבי הוא פשוט לחשב ממוצע. בהנחה שהשגיאות אינן תלויות, סכום התוצאות הוא (שים לב שכשמחברים שגיאות בלתי-תלויות, יש לסכום את הריבועים ולקחת שורש), ולכן הממוצע (נחלק ב-3) הוא . זה כמובן רעיון מזעזע, כמו שאפשר לראות - הרי איך יכול להיות שהיו שתי תוצאות עם שגיאות של 0.5 ו-1.0, והשגיאה שקיבלנו גדולה יותר? התשובה היא שלא השתמשנו היטב בנתונים - רצוי יהיה לתת משקל רב יותר לנתונים המדויקים יותר. האומד האופטימלי במובנים רבים, מה שמכונה UMVUE, ובמקרה הזה גם אומד נראות מקסימלית, הוא לקחת ממוצע משוקלל, כאשר המשקל הוא ההופכי של השונות. בנוסחה, האומד הוא . את השגיאה של הערך הזה, בהנחת אי-תלות בין השגיאות, אפשר לקבל בעזרת הנוסחה (מתורת ההסתברות) , וכאשר מציבים בה את האומד מקבלים . במקרה של המספרים שמוזכרים כאן, נקבל , והשגיאה היא . כלומר, התוצאה "הכי מוצלחת", לפי רוב הקריטריונים לאיכוות של תוצאה כזו, היא . שים לב שבסופו של דבר, מכיוון שיש תוצאה אחת איכותית הרבה יותר מכל היתר (זו עם השגיאה של 0.5), מדובר בתיקונים קלים לֹתוצאה הזו ותו לא - התוצאה השניה באיכותה (2.5) נמוכה משמעותית, ולכן יש פה 'תיקון' קל למטה. אילו התוצאות היו קרובות זו לזו, ההבדל בין הממוצע לבין השיטה הזו לא היה משמעותי במיוחד. משה, אתה חושב שפספסתי משהו מהותי? Eyalweyalw - שיחה 12:43, 18 בספטמבר 2019 (IDT)
תודה, אייל. מה שכתבת נכון במקרים רגילים ובשגיאות סטטיסטיות. כאשר מדובר בשגיאות שנובעות ממכשירי המדידה, למשל, זה לא בהכרח נכון. משה פרידמן - שיחה 14:29, 18 בספטמבר 2019 (IDT)
משה פרידמן האם השיטה הזאת באמת כה טובה? נניח ואחת השגיאות באחת המדידות היא כמעט אפסית. יוצא שהממוצע יוטה בצורה קיצונית כלפי הערך הזה. אפילו אם הערך המדוד עם שגיאה מאוד קטנה נמצא בקצה התפלגות. Corvus‏,(Nevermore)‏ 19:24, 3 באוקטובר 2019 (IDT)
התשובה הקצרה היא כן. ההטיה שיוצרת מדידה בודדת עם שגיאה קטנה נכונה סטטיסטית. דרך אחת להסתכל על זה היא למדוד את המרחקים בין הערך הממוצע שחישבת לערכים המדודים ביחידות של סטיית התקן שלהם. אתה מציג אפשרות של מדידה עם שגיאה קטנה שנמצאת בקצה ההתפלגות, אבל זה דבר שצריך לכמת. כמה סטיות תקן מהערך ה"אמיתי"? הנוסחא שהובאה למעלה מסתכלת על השגיאה ביחידות של סטיות תקן, ולכן היא בדיוק השיטה המתאימה לכמת את השאלה "מה הסיכוי שהמדידה נמצאת בקצה ההתפלגות". אחרי שאמרנו את זה, אני מחזיר לתשובה שכתבתי במעלה העמוד לשואל הראשון, וגם בקצרה בדיון זה. ניתוח שגיאות זה דבר מורכב. הנוסחא הזו נכונה תחת הנחות של שגיאות בלתי תלויות שמתפלגות נורמלית עם סטיית תקן ידועה. זה לא הדבר הרגיל. אם השגיאה הקטנה בדוגמא שנתת נובעת מאופטימיות יתר של המודד, למשל, התוצאה תהיה קטסטרופלית. לכן אין נוסחא שיכולה להוות תחליף לניתוח מושכל של הנתונים והשגיאות. הדבר הבסיסי הוא לבצע מבחן כי בריבוע, שבודק בדיוק את זה. המבחן עונה על השאלה מהי ההסתברות שבהנתן והערך הפיזיקלי הוא אכן הערך שחישבנו, ובהנתן שהשגיאות נכונות ומתפלגות נורמלית באופן בלתי תלוי, נקבל את התפלגות המדידות שקיבלנו. אם השגיאה הקטנה מהדוגמא שלך אכן נתנה משקל מוגזם למדידה, מבחן כי בריבוע יגלה את זה, וזה יתבטא ב p-value מאוד קטן של התפלגות כי-בריבוע המתאימה. משה פרידמן - שיחה 06:57, 4 באוקטובר 2019 (IDT)

פוטנצניאל מתקדם ומפגר[עריכת קוד מקור]

היי, אני מבקש הסבר מילולי לתופעה הבאה:לפי משוואות מקסוול לגלים אלקטרומנגטיים (אבל באנגלית ראיתי שפעם מתייחסים לשדות, פעם לגלים, פעם לפוטנציאל....לא הבנתי :/ ) יש שתי תוצאות אפשריות כשם הכותרת. בבקשה לתת דוגמה. לצורך המחשה מה אני צריך ראיתי באיזה מקום לא זוכר איפה, שזה אומר שגל יוצא מאנטנה מגיע לנקודה מסוימת, הוא הגיע אחרי זמן מסוים לנקודה כי אי אפשר לעבור את מהירות האור, אז כל מרחק לוקח זמן לעבור. לעומת זאת, המתקדם אמור להיות כזה שהגיע לפני שיצא. מהעתיד... אז אני צריך להבין יותר טוב במה מדובר. אם לא בטוחים למה אני מתכוון https://en.wikipedia.org/wiki/Retarded_potential https://en.wikipedia.org/wiki/Li%C3%A9nard%E2%80%93Wiechert_potential#Implications https://en.wikipedia.org/wiki/Wheeler%E2%80%93Feynman_absorber_theory


ואם יש קשר ישיר (די בטוח שיש עקיף) ללוגיקה פרובבליסטית, אני אשמח גם להבין את זה. ועוד שאלה קטנטונת, איך בדקו ששזירה קוונטית מתרחבת באותו רגע (מהר ממהירות האור), איזה ניסוי? תודה Meni111 - שיחה 22:37, 30 בספטמבר 2019 (IDT)

איפה בספקטרום האלקטרומגנטי[עריכת קוד מקור]

שזה בעצם ספקטרום של תדירות ועוצמה של ההפרעות בשדה, נמצאים הקווי כוח שיוצאים ממגנט? כלומר ההפרעה המגנטית במגנט רגיל? שאלה נוספת למה יש התאמה בין אורך הגל לתדר. לא יכול להווצר בשום אופן גל ארוך עם תדירות גבוהה? תודה חייב להוסיף שאלה. האם הטכיון, הוא חלקיק שמנבאים שימצא כתוצאה מתיאוריה מסוימת שמחייבת אותו כמו שחזו חלקיקים אחרים? האם הוא תוצאה אפשרית לאחת המשוואת של תיאוריה מסוימת? Meni111 - שיחה 23:27, 30 בספטמבר 2019 (IDT)

מהירות האור, שהיא גם מהירות התפשטותו של גל אלקטרומגנטי, קבועה. כך ישנה התאמה חד-חד ערכית בין אורך גל לתדירות: מספר המחזורים בשנייה הוא כמה גלים ישנם לאורך שניית אור אחת, ומכאן הקשר שלא ניתן לנתק בין תדירות לאורך גל. בתווך שאינו ריק מהירות האור נמוכה יותר, אבל גם כאן מספר המחזורים בשנייה הוא מספר הגלים לאורך שניית או אחת, ושוב מקבלים את היחס החד-ערכי בין תדירות לאורך גל.
שדה מגנטי אינו גל אלקטרומגנטי, אלא אחד משני השדות שלאורכו מתפשטת הפרעה שהיא הגל האלקטרומגנטי (השדה השני הוא שדה חשמלי). בהקבלה לגלי ים, הדה המגנטי הוא הים שעליו נוצרים הגלים. בהקבלה לגלי קול, השדה המגנטי הוא האוויר שבתוכו נעים גלי הקול.
טכיון אינו חלקיק שחייב שיתקיים, אלא חלקיק שאין מניעה לקיומו, כלומר הוא לא סותר שום כלל. נכון להיום אין תצפית שמוכיחה קיום של טכיונים ולעת עתה הם חלקיקים היפוטתיים. !Σiη Stαlεzε אילן שמעוני - שיחה 04:48, 1 באוקטובר 2019 (IDT)
תודה. לא הבנתי איך מהירות ההתקדמות של הגל קשורה למספר "העליות והירידות", זה לא אמור להיות קשור לכמה אנרגיה יש בגל? הגל יכול להתקדם במהירות האור, בין אם יש לו תדירות גבוהה או נמוכה או שהוא קצר או ארוך. אבל למה השניים האחרונים קשורים? ואגב למה אנחנו לא יכולים לראות גל רדיו, בגלל האורך שלו או התדירות הנמוכה שלו? ובעצם בניסוח אחר - יש אפשרות ליצור גל אדום שיהיה ארוך כגל רדיו עם מכשירים מאוד חזקים?

אז מגנט מעוות את השדה המגנטי, אבל איך הוא מעוות אותו בלי "הפרעה" כלומר בלי שום פוטון שיעשה את זה? (בעצם שאלה מקדימה: בלי מגנט, יש שדה מגנטי? כי אני יודע שפוטון נושא את השדה של עצמו מצד אחד, מצד שני הוא גם ההפרעה של השדה, אבל בדר"כ מדברים על שדות שיש בכל המרחב כל הזמן, ואם השדה עצמו נע אז הוא בעצמו הפוטון למעשה. אז אולי צריך הבהרה בזה קודם) חג שמח Meni111 - שיחה 15:00, 1 באוקטובר 2019 (IDT)

קביעות מהירות האור[עריכת קוד מקור]

כמו תמיד השאלה מתחילה ב: יש מישהו בכדה"א ויש מישהו בחללית, 90% ממהירות האור מתרחק מכדה"א. בחללית הזמן עובר לאט יותר ביחס לזה שנשאר בכדה"א. עכשיו נסבך (יותר): בחללית האור נע ב 300,000 ק"מ לשנייה +-. השנייה היא של החללית, שהיא שנייה יותר איטית מזו שעל כדה"א. כלומר, האור נע לאט יותר בחללית לעומת כדה"א. כאן תאמרו אבל המרחק מתקצר אבל מה קורה עם המרחק הוא אנכי לכיוון? והאם התקצרות המרחק לבדה מספיקה כדי לקזז את הפרש הזמן? האם האור לא באמת נע לאט יותר בחללית וקבוע רק לאלה שבאותה מערכת ייחוס ולא לכל המערכות בו זמנית? תודה Meni111 - שיחה 13:29, 12 באוקטובר 2019 (IDT)

העובדה האמפירית היא שמדידת מהירות האור בריק, מכל מערכת ייחוס שהיא, מעלה תמיד את אותו ערך. האור לא "נע לאט יותר בחללית לעומת כדה"א". נוסחאות שינויי האורך והזמן נבנו מלכתחילה כך שכל מדידה תניב אותה תוצאה בדיוק, ולא להיפך. נקודת המוצא של יחסות פרטית הייתה שעל סרגלי המרחק ושעוני הזמן להתאים את עצמם לעובדה האמפירית. !Σiη Stαlεzε אילן שמעוני - שיחה 19:55, 26 באוקטובר 2019 (IDT)

שאלה בהסתברות[עריכת קוד מקור]

שלום, מציעים לאדם לבחור בין שני וילונות: מאחורי האדום יש מיליון דולר, מאחורי הירוק יש 100 מיליון דולר בהסתברות של 50%.

  1. מה עדיף?
  2. האם זה דומה לבעיית מונטי הול?
  3. האם זה משנה שהמשחק הוא חד פעמי לגמרי או שהוא משוחק כל יום - תמיד עם אדם אחר?

חזרתישיחה 14:54, 22 באוקטובר 2019 (IDT)

שאלה מסקרנת. באופן אינטואיטיבי אם היתה לי הזדמנות אחת בלבד, הייתי בוחר את האדום, למרות שתוחלת של הווילון הירוק הוא פי 50 יותר גבוהה. אבל אם היו לי 100 ניסיונות, אז בכולם הייתי בוחר בירוק. אולי פרופסור וישנה יכול להסביר אם האסטרטגיה שלי שגויה? Corvus‏,(Nevermore)‏ 15:45, 22 באוקטובר 2019 (IDT)
אני לא רואה שום קשר לבעיית מונטי הול. מקובל להשתמש בתוחלת בתור פונקציית המטרה שאותה רוצה למקסם "שחקן רציונלי", אבל ברור שזהו רק קירוב. התוחלת מתאימה במקרה של תשלומים קטנים וחוזרים (משום שאז נכנסים לפעולה חוקי המספרים הגדולים). אבל מזמן ברור ש"שנאת סיכון" מעוותת את פונקציית המטרה במידה מורגשת. במקרה הזה מציעים לאדם לקנות במיליון דולר, כרטיס הגרלה שיכול להקנות לו 100 מיליון בהסתברות חצי. יש כאלו שיקחו את הסיכון, ויש כאלה שלא. עוזי ו. - שיחה 19:48, 22 באוקטובר 2019 (IDT)
כלומר אם הבנתי נכון אין לזה פתרון מתמטי? חזרתישיחה 21:44, 22 באוקטובר 2019 (IDT)
"מה לעשות כדי למקסם את פונקציית המטרה הבאה" היא שאלה מתמטית, "מה עדיף" - לא. עוזי ו. - שיחה 22:23, 22 באוקטובר 2019 (IDT)
אז נטו "מה לעשות כדי למקסם את פונקציית המטרה הנ"ל"? חזרתישיחה 08:51, 23 באוקטובר 2019 (IDT)
איזו? תאר את הפונקציה, ואגיד לך איך למקסם אותה. עוזי ו. - שיחה 02:12, 27 באוקטובר 2019 (IST)

מבחן סטטיסטי עבור סדרות נתונים עם מאפיין של זמן[עריכת קוד מקור]

שלום לכולם,

יש לי סדרת נתונים עם פרמטר של זמן (נניח לצורך הדוגמה שמדובר על שיחות טלפון ושעות ההתרחשות שלהן). כעת, יש לי השערה שהסדרה היא סטציונרית ביחס למימד הזמן עבור אומד סטטיסטי מסוים (שאני הגדרתי), כלומר, לא משנה כמה שיחות היו ביחידת זמן נתונה, כמה השתתפו בהן וכו' האומד הספציפי נשאר אותו דבר (עד כדי סטיות קטנות ממנו) בכל יחידת זמן. כדי לבחון את ההשערה החלטתי לחלק את הסדרה לחלונות זמן ולהפעיל את האומד הסטטיסטי על כל הנתונים בחלון (למשל, כמות השיחות הממוצעת/החציונית לחלון או כל אומד אחר) ועכשיו יש לי סדרה של אומדים, המתאימה אומד לכל אחד מהחלונות.

אשמח לדעת: א. איזה מבחן סטטיסטי ניתן להפעיל על סדרת האומדים כדי לבחון האם האומד הוא סטציונרי? ב. האם המתודה הזו (חלוקת הנתונים לחלונות -> חישוב האומד על החלון -> מבחן סטציונריות על האומדים) היא מתודה מוצלחת למה שאני מנסה לעשות (כאמור, להוכיח שהאומד שהגדרתי הוא סטציונרי על כל הסדרה ביחס לזמן)? ג. בנוגע לחלוקת הנתונים לחלונות זמן - האם כדאי לחלק את הנתונים לחלונות זמן נבדלים או כאלה שיש ביניהם חפיפה של נתונים? ואיך כדאי לבחור את גודל חלון הזמן האופטימלי?

אשמח גם למילות מפתח או כיוונים כדי שאוכל לחפש בהמשך. מקווה שהשאלה מנוסחת היטב. בברכה.

חור שחור[עריכת קוד מקור]

האם חללית שיש לה מנוע שמאיץ אותה כל הזמן, יכולה להמריא מחור שחור ולצאת ממנו? או לפחות, ממיקום כלשהו בתוך אופק האירועים של חור שחור?

לא. בתוך אופק הארועים כל העתידים האפשריים מובילים לסינגולריות. !Σiη Stαlεzε אילן שמעוני - שיחה 19:47, 26 באוקטובר 2019 (IDT)

שם של גמד מההיסטוריה[עריכת קוד מקור]

היי אני זוכר שקראתי פעם בויקיפדיה על גמד (גרמני?) שחי לפני כמה מאות שנים שמיום שהוא זוכר את עצמו הוא היה כלוא בחדר חשוך עם סוס מתנדנד בחדר והיו מכניסים לו אוכל לחדר, ומוציאים אותו לסיבוב קצר בחוץ לפני האוכל וזהו. ובגלל שהוא היה כלוא הוא לא ידע לדבר אף שפה (!). ובגלל חוסר שמש/ אור הוא היה גמד. וזה היה כי הוא היה כנראה יורש העצר של המלכה או משהו כזה. ובסוף מישהו כתב לו "רוצה לדעת את סודות עברך? אז בוא ותיפגש איתי" ואז הוא הגיע והוא רצח אותו. מי זה היה הגמד הזה? מישהו יכול בבקשה להפנות אותי לערך? עברית - שיחה 18:17, 3 בנובמבר 2019 (IST)

קספר האוזר

  1. פנה לויקיפדיה:הכה את המומחה הרגיל. כאן שואלים רק שאלות במדעים מדויקים.
  2. משהו מופרך בסיפור (כפי שאתה מציג אותו). איך הגמד הבין מה שכתב לו ה"מישהו" אם הוא לא ידע לדבר באף שפה (וכל שכן לכתוב)?
  3. יש סיכוי שאתה מתייחס לאיש במסכת הברזל?
יום נעים, אביתר ג'שיחה • 14:45, 3 בדצמבר 2019 (IST)

עקרון השקילות מול עקמומיות המרחב[עריכת קוד מקור]

מישהו יכול להסביר את מה שהבחור מתאר בסרטון בין הדקות 7 ל-9? [2] השומרוני הטוב שיחה 13:41, 24 בנובמבר 2019 (IST)

ערך הניבוי החיובי המשולב של שתי בדיקות[עריכת קוד מקור]

שלום, נניח שישנן שתי בדיקות הבודקות אם נבדק חולה במחלה כלשהי או לא. ערך הניבוי החיובי של בדיקה א' היא 90%. ערך הניבוי השלילי של בדיקה ב' היא 70%. נבדקתי בבדיקה א' והתוצאה הייתה חיובית. נבדקתי בבדיקה ב' והתוצאה הייתה שלילית. השאלה: מהי ההסתברות שאני חולה? אודה למי שיציג את החישוב. תודה. אלון טטי - שיחה 18:44, 24 בנובמבר 2019 (IST)

"ערך ניבוי חיובי" הוא הסיכוי שאתה חולה בהנתן שהבדיקה חיובית (היינו כאשר X=חולה ו-A=חיובי בבדיקה א'); "ערך ניבוי שלילי" הוא הסיכוי שאתה בריא בהנתן שהבדיקה שלילית (היינו כאשר B=חיובי בבדיקה ב', והתג מציין את המשלים). לא סביר להניח שהבדיקות בלתי תלויות (משום שהן מודדות את אותו אפקט), אבל כן סביר להניח שהן בלתי תלויות עבור בריאים ועבור חולים (כל קבוצה בפני עצמה). ההסתברות המבוקשת תלויה מלבד הנתונים שמסרת גם באחוז החולים: . עוזי ו. - שיחה 21:29, 24 בנובמבר 2019 (IST)

האם יש קרינה רדיואקטיבית בפצצת מימן?[עריכת קוד מקור]

קראתי את הערך, ולא הייתי בטוח לגבי התשובה לשאלה זו: מלבד הקרינה הרדיואקטיבית שנובעת מהביקוע שנותן את האנרגיה לתחילת תהליך ההיתוך, האם גם ההיתוך עצמו יוצר קרינה רדיואקטיבית? האם נכון לומר שהנזק העיקרי של פצצת מימן נובע מהאנרגיה הקינטית ומהחום של הפיצוץ, ולא מהקרינה? אביתר ג'שיחה • 14:29, 3 בדצמבר 2019 (IST)

בכל מקרה הנזק העיקרי הוא מההדף. ההדף יהיה אחראי ל 90% מהקורבנות לפחות, כפי שהיה בהפצצת הירושימה ונגסקי. אבל קרינה תהיה, ולא רק מהביקוע. בנשק גרעיני משתמשים באיזוטופים הכבדים של מימן, דיוטריום וטריטיום. ההיתוך שלהם מחולל קרינת ניטרונים רבי אנרגיה. !Σiη Stαlεzε אילן שמעוני - שיחה 17:31, 3 בדצמבר 2019 (IST)
מעבר לתשובה של אילן, היתוך גרעיני יוצר קרינת גמא וקרינת נייטרונים. ייתכן שיהיו נפגעים שיצליחו לשרוד את גל ההדף ואת החום ויספגו מספיק קרינה כדי להפגע קשה. ההבדל העיקרי בין פצצת היתוך ובין פצצת ביקוע זו הנשורת הגרעינית - בפצצת היתוך הנשורת קטנה יותר ולכן הזיהום הרדיואקטיבי לטווח הארוך נמוך יותר. בברכה, Easy n - שיחה 20:16, 3 בדצמבר 2019 (IST)
אכן. נפגעי נשורת בהכרח שרדו את ההדף, שכן עד תחילת הנשורת חולפת שעה לפחות (בדרך כלל יותר). כמו כן מי שהיה קרוב למוקד הפיצוץ אבל ששרד את ההתקפה עצמה בזכות מקלט (מקלט רגיל די בו, אגב), יצא מהמקלט ולא נמלט מהאזור הנגוע מהר - גם הוא יחטוף מחלת קרינה. וכמובן - ישנם בישי המזל, שחלקיק רדיואקטיבי בגופם (למשל יוד רדיואקטיבי, שמצטבר בבלוטת התימוס) יקרין ויגרום לפריצת סרטן שנים, אפילו עשרות שנים, אחרי האירוע עצמו. אבל חשוב לשמור על אופטימיות, ויש לה בסיס. בנגאסקי אדם נכנס למקלט במרחק 150 מטר בלבד מגראונד זירו, לא טרח לסגור את הדלת וזה עלה לו במחלת קרינה חמורה למדי. הוא החלים ונפטר בעשור הקודם בשיבה טובה. !Σiη Stαlεzε אילן שמעוני - שיחה 20:25, 3 בדצמבר 2019 (IST)

סטטיסטיקה: איך לבודד השפעה של פרמטר אחד?[עריכת קוד מקור]

סליחה שזה קצת אורך וחופר. אולי שאלה טיפשית שאני רק מורח. סיפור: היו שתי קבוצות מחקר מתחרות בשתי מעבדות שונות שעשו סדרת ניסויים כמעט זהה על דגמים שונים בתנאים קצת שונים. אני מקבל תוצאות משתי הקבוצות שבו תוצאת הניסוי תלויה במספר גורמים (ואין אפשרות לחזור על הניסויים עצמאית. כלומר עובדים עם מה שיש).

הניסוי לצורך הדוגמה בוחן הולכה חשמלית של חומר כפונקציה של גודל המדגם וטמפרטורה בה הוא נמדד. הדגמים בהן השתמשו שתי הקבוצות הם בגדלים יחסית אקראיים. הטמפרטורות נמדדו, אך לא הוגדרו מראש, ככה שגם שם יש הפלגות. אז לכל זוג של (גודל, טמפרטורה) יש לי נתון של הולכה חשמלית. קבוצה אחת עבדה באופן סיסטמטי בטמפרטורות גבוהות יותר ובדגמים מעט גדולים יותר ביחס לקבוצה השנייה וקיבלה הולכות גבוהות יותר. וקיימת חפיפה בין ההתפלגויות של הקבוצות. עד כאן תוצאות ניסוי יבשות. המטרה שלי במחקר היא לענות על השאלה למה התוצאות של שתי הקבוצות הן שונות: האם זאת תוצאה של הטמפרטורה או של הגודל? כלומר המטרה שלי היא לנסות לבודד את השפעת הטמפרטורה לחוד והגודל לחוד. שזה לדעתי שקול ללענות על השאלה "איך הטמפרטורה בלבד משפיעה על ההולכה?".

בנוסף יש לי כלי חשוב! אני לא יודע בדיוק מה החומר ואני מניח שכל הדגמים הם פחות או יותר זהים. אז יש לי מודל תאורטי שהוא למעשה פונקציה מתמטית אנליטית. בהנחת הרכב כלשהו אני יודע לחשב מה תהיה הולכה עובר גדול וטמפרטורה ידועים. כלומר יש לי פונקציה , שהיא קירוב למציאות (שבה ההרכב המדויק לא ידוע).

אז אחרי כל ההסבר: מה השיטה לטפל במקרה? שואל השאלות - שיחה 18:06, 10 בדצמבר 2019 (IST)

אני מקווה שהבנתי את השאלה. יש מקבץ של נקודות , ולכל נקודה תוצאה של ניסוי שנערך עם הפרמטרים האלה. הנחת היסוד היא שהתוצאות האלה מתפלגות סביב ערך מסויים (עם שגיאה). זה מותיר שתי שאלות מהותיות: (1) איך למצוא את הפונקציה f [ואיך לתקף אותה וכו'], ו-(2) איך לנתח את הפונקציה. נדמה לי שאתה שואל את השאלה השניה, שהיא הרבה יותר קלה. אם זו באמת פונקציה של שני משתנים, אתה רואה ששניהם משפיעים. ההשפעה המקומית מחושבת לפי נגזרת חלקית. עוזי ו. - שיחה 13:40, 12 בדצמבר 2019 (IST)
הבנת פחות או יותר נכון. יש לי אוסף נתונים א' שהוא ואוסף נתונים ב' שהם שבאופן סיסטמתי בקבוצה השניה כל הפרמטרים המדודים הם מעט גדולים יותר ואני רוצה לענות ספציפית על השאלה למה קבוצה ב' קיבלה יותר. האם זה כי הxים שלהם גדולים יותר או כי זה בגלל שהyים שלהם גדולים יותר?
כמו שציינתי, בנוסף למדידות יש לי גם מודל תיאורתי וחשבתי בכיוון של נגזרת חלקית. אני בקלות יודע לחשב כשאני לוקח dx קטן מספיק. בעיה היא שיש לי הרבה זוגות של והנגזרת החלקית תהיה שונה, כלומר ואני לא יודע עבור איזו נקודת מדידה לחשב. שואל השאלות - שיחה 18:10, 12 בדצמבר 2019 (IST)
אם כבר מצאת את הפונקציה, אתה יכול לתקוף אותה אנליטית, ולא מוגבל לחשב בנקודות המדידה.
אפשר להוסיף לזה שאלה אחרת - איך מעריכים את הנגזרת של פונקציה באמצעות דגימה מוגבלת של הערכים שלה. זו בעיה באנליזה נומרית. עוזי ו. - שיחה 22:34, 12 בדצמבר 2019 (IST)

1+2+3+4+...[עריכת קוד מקור]

ראיתי בכמה מקומות שקיימת טענה שהסכום הוא . אני לא מבין איך זה ייתכן. הרי הטור הזה שווה לטור ואם נגדיר אותו נמצא ש ונמצא ש---213.8.151.212 21:39, 1 בינואר 2020 (IST)

הוספת סוגריים לטור שאינו מתכנס בהחלט היא פעולה בעייתית (ע"ע משפט רימן). לגבי הטור שבכותרת, ראה טור המספרים הטבעיים. עוזי ו. - שיחה 23:31, 1 בינואר 2020 (IST)
תודה רבה, זה נושא שעלי ללמוד עדיין. הבעיה היא שבהוכחות שאני ראיתי לסכום זה משתמשים בהפחתת הטור ממנו וטענה שההפרש שווה להכפלת הטור ב-4. ואז עושים העברת אגפים, שלכאורה אינה חוקית שהרי אינסוף מינוס אינסוף אינו מוגדר. כמו כן משמיטים סוגריים מהטור --213.8.151.212 09:05, 2 בינואר 2020 (IST)
קרא בעיון את טור המספרים הטבעיים. עוזי ו. - שיחה 10:19, 2 בינואר 2020 (IST)
תודה. אני רואה שכמה שאני חושב שאני יודע משהו, זה לא נגמר... אמנם אם אפשר בבקשה לענות לי כעת רק על השאלה הזו, האם לפי זה טור המספרים הטבעיים לא שווה לטור ? כמובן אני מבין ששיטת הסיכום הפשוטה לא מתאימה לכאן.--213.8.151.212 21:46, 2 בינואר 2020 (IST)
התשובה היא שסכום של טור אינסופי (ובפרט "סכום" של טור שאינו מתכנס) הוא מושג רגיש, ושינויים "קלים" בטור, כמו הזזת סוגריים או החלפת סדר הסכימה, יכולים לשנות את התוצאה.
לפי שיטת הסיכום של אבל, . נניח שהמצאנו שיטת סיכום המכלילה את שיטת אבל, ובנוסף לזה היא מקיימת את "תנאי המתיחה" . נניח שהשיטה הזו יודעת לסכם ; אז לפי ההנחה גם ; ואם נחבר את זה לטור הראשון, נקבל ; וכשנחבר את שני הטורים האחרונים נגלה ש-, אבל הסכום הזה שווה ל-a לפי ההנחה, ולכן (בעוד שטור המספרים הטבעיים מסתכם לפי אותן הנחות למינוס 1/12). עוזי ו. - שיחה 00:22, 3 בינואר 2020 (IST)
מעניין. ואני חשבתי שאפשר להוכיח שהסכום הוא 0... לפי ההנחה שa=2a. כמו כן אם נכפול את טור המספרים הטבעיים ב-12 ותוסיף לו 1 הוא יהיה 0 אם נישאר עקביים באלגברה. ואם הטור שווה ל1+1+1.. הוא באמת 0.--213.8.151.212 10:08, 3 בינואר 2020 (IST)
למה להניח ש-a=2a? שוב, סיכום טורים הוא מלאכה רגישה. מה זה "להוסיף 1"? להוסיף כרכיב נוסף משמאל? לחבר לרכיב הראשון? עוזי ו. - שיחה 10:37, 3 בינואר 2020 (IST)
לפי כשתציב 0 ב-m מתקבל באמת שהטור הוא מינוס חצי. אני התבלבלתי וחשבתי ש הוא 0. ולכן ניסיתי לשכנע את עצמי. אמנם אם נניח שהוספת 0 בהתחלה לא משנה את הסכום, אז ממילא . ולכן a=2a על הוספת אחד לטור לא הבנתי את השאלה. הכוונה שמניחים שהסכום הוא לכן שווה 0. הטור שווה A+1. (אם נניח שהוספת סוגריים לא משפיעה על הטור).--213.8.151.212 13:44, 5 בינואר 2020 (IST)

סדרה הנוצרת מחזרה על פונקציה[עריכת קוד מקור]

האם יש שם מסויים לסדרה המוגדרת באופן הזה: כאשר נקבע באופן שרירותי? גיליתי כמה תכונות של סדרות כאלה אבל לא ידעתי אם יש להם שם. למשל הסדרה לא קיימת ממספר קטן מאפס, אבל מכל מספר אחר היא "מזגזגת" ובמספר מסויים היא נשארת בו לעולם. הסדרה מתכנסת לגבול מסויים. (תלוי ביחידות שאתה מגדיר לזויות). הסדרה עולה בצורה מתונה וצוברת תאוצה מ-0 עד חצי פאי, ואחר כך "משתוללת" עד שמתייצבת על ערך קטן מ-1 וחוזרת לעלות בצורה מתונה.--213.8.151.212 09:21, 2 בינואר 2020 (IST)

זו סדרה רקורסיבית, המוגדרת על ידי מערכת דינמית (אנ'). עוזי ו. - שיחה 10:22, 2 בינואר 2020 (IST)

מדידת שטחים[עריכת קוד מקור]

האם יש סיבה לכך שיחידות המדידה הם דוקא ריבוע ולא משולש שווה צלעות? אינטואיטיבית יש לי תחושה שקל יותר לחשב על ידי מדידת אורך ורוחב והכפלה ולכן הריבוע הוא המודד, אבל הרי משולש שווה צלעות יכול לרצף כל שטח כמו שריבוע יכול (כשהיחידות לא שלמות אפשר לחלק את הבסיס של המשולש לפי החלק למשל לחצי או רבע. ואז לחתוך ולהרכיב מחדש). ושטח ריבוע בשיטה זו הוא sec 60°. ‏--213.8.151.212 10:15, 3 בינואר 2020 (IST)

אין לי תשובה לשאלה ההיסטורית, אבל בנוגע לנוחות השימוש, יש הרבה הצדקות (לכל הפחות בדיעבד) לבחירה בריבוע. למשל, ניתן להגדיר משולש ומקבילית בעזרת שתי צלעות שלהם, ואז שטח המקבילית הוא פי שניים משטח המשולש. אם לוקחים מקבילית (או משולש) ומקבעים שתיים מהצלעות שלה להיות באורך 1 אבל מאפשרים משחק עם הזווית (נוצר למעשה מעויין), משולש ישר זווית או ריבוע מקבלים את השטח המקסימלי בעוד שמשולש שווה שוקיים הוא קטן יותר. באופן כללי, דברים מאונכים הם נוחים יותר - אם אתה עובד עם צירים שהם בזווית של 60 מעלות זה לזה, בחירה של ציר אחד (שהיא תמיד תהיה שרירותית, כי אפשר לסובב את המרחב) משאירה לך שתי אפשרויות לציר השני, בעוד שבמקרה של צירים מאונכים היא קובעת לך בדיוק באיזה ציר להשתמש. בממדים גבוהים יותר זה אפילו פחות טריוויאלי. Eyalweyalw - שיחה 13:22, 6 בינואר 2020 (IST)
תודה רבה.--213.8.151.212 15:11, 6 בינואר 2020 (IST)
זה דווקא רעיון מאוד נחמד שיכול להביא להגדרות משונות ותוצאות חדשות בגיאומטריה. למשל שטח פנים של פוליהדרונים יהיה שלם ועוד דברים מעניינים. יחידות מ"מ, סמ"מ - מטר משולש, סנטימטר משולש. יכולות להיות לזה אפליקציות שימושיות בגרפיקה ממוחשבת, שהרבה ממנה נעשה במשולשים. ‏Setresetשיחה 17:29, 14 בינואר 2020 (IST)

תורת היחסות הפרטית[עריכת קוד מקור]

עמוד שמחוברים אליו שלושה פנסים, נע לאורך ציר X, כאשר פנס אחד מהשלושה מכוון לכיוון ציר Y, שני הפנסים האחרים, אחד שולח אור בכיוון ההתקדמות והשני בכיוון ההפוך. כאשר העמוד מגיע לנקודה מסויימת הוא פוגש בעמוד דומה לו נייח ובאותו הרגע שני העמודים שולחים אור. האם האור שיוצא מהעמוד הנייח יגיע לאותו מקום של האור שיצא מהעמוד הנייד בכל רגע (מנקודת מבט של הנייח) או שיש הבדל בין מה שיצא לכיוון ציר Y למה שיצא לכיוון ציר X. כלומר אם יניחו מכשיר בדומה לאינפרומטר, כדי לקלוט את הגלים בציר Y האם יראו שהמהירות שונה, כי העמוד הנייח שולח אור לכל הכיוונים באותה מהירות ואילו הנייד האור נראה כיוצא ממנו לאט יותר לפי הזמן שלו? נניח שהעמוד הנייד נע במהירות 3/5 ממהירות האור, האם האור יתרחק ממנו רק ל-4/5 ממה שיתרחק מהעמוד הנייח בכיוון ציר y?‏ --213.8.151.212 11:01, 10 בינואר 2020 (IST)

נראה לי כעת שהשאלה לא נכונה, כי בהנחה שבאמת הפנס ניצב, אז הקרן מהנייח לא תלך באותו כיוון כמו הקרן של הנייד. ובאמת אם נניח נקודה כלשהי ששם נמצא מכשיר המדידה, צריך לבדוק את הגוף הנע ביחס אליו ואז אם נניח שציר X הוא בכיוון ההתרחקות ממנו זו תהיה מהירות מואצת.--213.8.151.212 13:11, 10 בינואר 2020 (IST)

למה אף פעם לא ניסו את ניסוי החתול של שרדינגר?[עריכת קוד מקור]

אפשר בכלל לעשות אותו? ואם לא, אז מה הרעיון שלו?

אין טעם לבצע את הניסוי. המטרה שלו הוא להציג את הקונספט שהחתול של שרדינגר נחשב לחי ומת בו זמנית כל עוד אין מידע לגבי המצב שלו. Corvus‏,(Nevermore)‏ 16:07, 11 בינואר 2020 (IST)