פונקציה רציפה בהחלט – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
קישורים פנימיים
הרחבה, הוספת מקור
שורה 119: שורה 119:


==לקריאה נוספת==
==לקריאה נוספת==
* {{Citation|last=Ambrosio|first=Luigi|last2=Gigli|first2=Nicola|last3=Savaré|first3=Giuseppe|title=Gradient Flows in Metric Spaces and in the Space of Probability Measures|publisher=ETH Zürich, Birkhäuser Verlag, Basel|year=2005|isbn=3-7643-2428-7}}<bdi><cite class="citation cs2" data-ve-ignore="true" id="CITEREFAmbrosioGigliSavaré2005">[[מיוחד: ספר מקורות / 3-7643-2428-7|3-7643-2428-7]]</cite></bdi>
* {{Citation|last=Athreya|first=Krishna B.|last2=Lahiri|first2=Soumendra N.|title=Measure theory and probability theory|publisher=Springer|year=2006|isbn=0-387-32903-X}}<bdi><cite class="citation cs2" data-ve-ignore="true" id="CITEREFAthreyaLahiri2006">[[מיוחד: ספר מקורות / 0-387-32903-X|0-387-32903-X]]</cite></bdi>
* Leoni, Giovanni (2009), ''[http://bookstore.ams.org/gsm-105 קורס ראשון במרחבי סובולב]'', לימודי מוסמך במתמטיקה, החברה האמריקאית למתמטיקה, עמ 'xvi + 607{{ISBN|978-0-8218-4768-8}}, MR , , [http://www.maa.org/press/maa-reviews/a-first-course-in-sobolev-spaces MAA]
* {{Citation|last=Nielsen|first=Ole A.|title=An introduction to integration and measure theory|publisher=Wiley-Interscience|year=1997|isbn=0-471-59518-7}}<bdi><cite class="citation cs2" data-ve-ignore="true" id="CITEREFNielsen1997">[[מיוחד: ספר מקורות / 0-471-59518-7|0-471-59518-7]]</cite></bdi>
* {{Citation|last=Royden|first=H.L.|title=Real Analysis|publisher=Collier Macmillan|edition=third|year=1988|isbn=0-02-404151-3}}<bdi><cite class="citation cs2" data-ve-ignore="true" id="CITEREFRoyden1988">[[מיוחד: ספר מקורות / 0-02-404151-3|0-02-404151-3]]</cite></bdi>


==קישורים חיצוניים==
==קישורים חיצוניים==

גרסה מ־10:21, 6 במאי 2021

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

בחשבון דיפרנציאלי ואינטגרלי, רציפות בהחלט היא תכונת „חֲלָקוּת” של פונקציות שהיא חזקה יותר מרציפות וגם מרציפות במידה שווה. המושג של רציפות בהחלט מאפשר להכליל את הקשר בין שתי הפעולות המרכזיות של החדו״אגזירה ואִסכּום. מערכת יחסים זו מאופיינת בדרך כלל (במשפט היסודי של החדו״א) במסגרת אינטגרל רימן, אך בעזרת רציפות בהחלט אפשר לנסח אותה במונחים של אינטגרל לבג. בהקשר של פונקציות ממשיות שמוגדרות על הישר הממשי, קיימים שני מושגים הקשורים זה בזה: רציפות בהחלט של פונקציות ורציפות בהחלט של מידות. ניתן להכליל את שני המושגים האלה בכיוונים שונים. לדוגמה, הנגזרת הרגילה של פונקציה קשורה לנגזרת רדון־ניקודים של מידה.

בתת־קבוצה קומפקטית של הישר הממשי מתקיימת שרשרת ההכלות הבאה למחלקות של פונקציות:

רציפה בהחלטרציפה במידה שווהרציפה

ואילו בקטע סגור,

גזירה ברציפותליפּשיציתרציפה בהחלט ⊆ בעלת השתנות חסומהגזירה כמעט בכל מקום

רציפות בהחלט של פונקציות

פונקציה רציפה אינה רציפה בהחלט אם היא אינה רציפה במידה שווה, מה שעשוי לקרות אם התחום שבו מוגדרת הפונקציה אינו קומפקטי – דוגמאות לפונקציות שכאלה:

  • בקטע ;
  • בכל הישר;
  • בקטע .

עם זאת, פונקציה רציפה עשויה לא להיות רציפה בהחלט אפילו בקטע סגור. ייתכן שהיא אינה גזירה כמעט בכל מקום (כמו פונקציית ויירשטראס שאינה גזירה באף נקודה). ייתכן שהיא דווקא גזירה כמעט בכל מקום ואף ש־ היא אינטגרבילית לבג, אך ההפרש בין האינטגרל הלא־מסוים של ל־ עצמה אינו קבוע. זה קורה למשל בפונקציית קנטור.

הגדרה

יהי קטע מוכלל. נאמר ש־ היא רציפה בהחלט ב־ אם לכל מספר חיובי , קיים מספר חיובי כך שכל סדרה סופית של תת־קטעים זרים בזוגות שֶׁל עם שמקיימת[1]

מקיימת גם
אוסף כל הפונקציות הרציפות בהחלט ב־ מסומן .

הגדרות שקולות

התנאים הבאים בפונקציה ממשית בקטע סגור שקולים:[2]

  1. רציפה בהחלט;
  2. גזירה כמעט בכל מקום, אינטגרבילית לבג, וּמתקיים
    לכל ;
  3. קיימת פונקציה אינטגרבילית לבג ב־ כך שמתקיים
    לכל .

אם תנאים שקולים אלה מתקיימים, אזי בְּהֶכְרֵחַ כמעט בכל מקום.

השקילות בין (1) ל־(3) ידועה גם בתור הכללת לבג למשפט היסודי של החדו״א או המשפט היסודי של החדו״א לאינטגרל לבג.[3]

להגדרה שקולה בהקשר של מידות, עיינו בפסקה הקשר בין שני המושגים של רציפות בהחלט.

תכונות

  • הסכום וההפרש של שתי פונקציות רציפות בהחלט גם הם רציפים בהחלט. אם שתי הפונקציות מוגדרות בקטע סגור, אז גם המכפלה שלהן רציפה בהחלט.[4]
  • אם רציפה בהחלט ואינה מתאפסת בקטע סגור, אז גם רציפה בהחלט.[5]
  • כל פונקציה רציפה בהחלט היא רציפה במידה שווה ולכן רציפה; כל פונקציה שמקיימת את תנאי ליפשיץ היא רציפה בהחלט.[6]
  • אם רציפה בהחלט, אז היא בעלת השתנות חסומה ב־.[7]
  • אם רציפה בהחלט, אז ניתן לכתוב אותה כהפרש של שתי פונקציות עולות במובן החלש וּרציפות בהחלט ב־.
  • אם רציפה בהחלט, אז היא מקיימת את תכונת לוזין (כלומר, לכל כך ש־ מתקיים , כאשר היא מידת לבג ב־).
  • רציפה בהחלט אם ורק אם היא רציפה, בעלת השתנות חסומה וּמקיימת את תכונת לוזין.

דוגמאות

הפונקציות הבאות רציפות במידה שווה אך אינן רציפות בהחלט:

  • פונקציית קנטור ב־ (היא בעלת השתנות חסומה, אך אינה רציפה בהחלט);
  • הפונקציה
    בקטע סופי שכולל את .

הפונקציה הבאה רציפה בהחלט אך אינה מקיימת את תנאי הלדר ביחס ל־:

  • הפונקציה ב־, לכל .

הפונקציה הבאה רציפה בהחלט וגם מקיימת את תנאי הלדר ביחס ל־, אך אינה ליפּשיצית:

  • הפונקציה ב־, לכל .

הכללות

יהי מרחב מטרי, ויהי קטע מוכלל. נאמר ש־ היא רציפה בהחלט ב־ אם לכל מספר חיובי , קיים מספר חיובי כך שכל סדרה סופית של תת־קטעים זרים בזוגות שֶׁל שמקיימת

מקיימת גם
אוסף כל הפונקציות הרציפות בהחלט מ־ ל־ מסומן .

הכללה נוספת היא המרחב של העקומות כך שלכל [8]

עבור כלשהי (מרחב או מרחב Lp).

תכונות של ההכללות האלה

  • כל פונקציה רציפה בהחלט היא רציפה במידה שווה ולכן רציפה; כל פונקציה שמקיימת את תנאי ליפשיץ היא רציפה בהחלט.
  • אם רציפה בהחלט, אז היא בעלת השתנות חסומה ב־.
  • עבור הנגזרת המטרית של f קיימת עבור λ - כמעט כל הזמנים ב- I, והנגזרת המטרית היא הקטנה ביותר כך שלכל מתקיים[9]

רציפות בהחלט של מידות

הגדרה

מידה על קבוצות בורל של הישר הממשי היא רציפה בהחלט ביחס למידת לבג (או נשלטת על ידי ) אם לכל קבוצה מדידה , גורר . נסמן את זה ב־.

ברוב היישומים, אם נאמר שמידה על הישר הממשי רציפה בהחלט – מבלי לציין ביחס לאיזו מידה היא רציפה בהחלט – נתכוון שהיא רציפה בהחלט ביחס למידת לבג.

אותו עיקרון תקף לגבי מידות על קבוצות בורל של כאשר .

הגדרות שקולות

התנאים הבאים עבור מידה סופית בקבוצות בורל של הישר הממשי שקולים:[10]

  1. רציפה בהחלט;
  2. לכל מספר חיובי קיים מספר חיובי כך ש־ לכל קבוצה שמידת לבג שלה קטנה מ־;
  3. קיימת פונקציה אינטגרבילית לבג בישר הממשי כך שלכל קבוצת בורל מתקיים

להגדרה שקולה בהקשר של פונקציות, עיינו בפסקה הקשר בין שני המושגים של רציפות בהחלט.

כל פונקציה אחרת שמקיימת את (3) שווה ל־ כמעט בכל מקום. פונקציה כזו נקראת נגזרת רדון־ניקודים, או צפיפות, של המידה הרציפה בהחלט .

השקילות בין (1), (2) ו־(3) מתקיימת גם ב־ לכל .

לפיכך, המידות הרציפות בהחלט ב־ הן בדיוק אלה שיש להן צפיפות; כמקרה פרטי, מידות ההסתברות הרציפות בהחלט הן בדיוק אלה שיש להן פונקציית צפיפות.

הכללות

אם ו־ הן שתי מידות באותו מרחב מדיד , נאמר ש־ היא רציפה בהחלט ביחס ל־ אם לכל קבוצה שעבורה .[11] נסמן את זה ב־. כלומר:

רציפות בהחלט של מידות היא רפלקסיבית וטרנזיטיבית, אבל אינה אנטי־סימטרית, ולכן היא להזמין מראש ולא סדר חלקי. במקום זאת, אם וגם , נאמר שהמידות ו־ שקולות. לפיכך רציפות בהחלט משרה סדר חלקי של מחלקות שקילות כאלה.

אם היא מידה מסומנת או מרוכבת, נאמר ש־ היא רציפה בהחלט ביחס ל־ אם ההשתנות הכללית שלה מקיימת או, באופן שקול, אם כל קבוצה שעבורה היא ־אפסית.

משפט רדון־ניקודים[12] קובע כי אם היא רציפה בהחלט ביחס ל־, ושתי המידות הן ־סופיות, אז ל־ יש צפיפות, או נגזרת רדון־ניקודים, ביחס ל־, כלומר קיימת פונקציה ־מדידה שמקבלת ערכים ב־, וּמסומנת , כך שלכל קבוצה ־מדידה מתקיים

מידות סינגולריות

בעזרת משפט הפירוק של לבג,[13] ניתן לפרק כל מידה לסכום של מידה רציפה בהחלט ומידה סינגולרית (ראו מידה סינגולרית).

הקשר בין שני המושגים של רציפות בהחלט

מידה סופית בקבוצת בורל של הישר הממשי היא רציפה בהחלט ביחס למידת לבג אם ורק אם פונקציית הנקודה היא פונקציה ממשית רציפה בהחלט. באופן כללי יותר, פונקציה היא רציפה בהחלט מקומית (כלומר בכל קטע סופי) אם ורק אם נגזרת ההפצה שלה היא מידה רציפה בהחלט ביחס למידת לבג.

אם מתקיימת רציפות בהחלט, אז נגזרת רדון־ניקודים של שווה כמעט בכל מקום לנגזרת של .[14]

באופן כללי יותר, מניחים ש־ היא סופית מקומית (ולא סופית) וש־ מוגדרת כ־ עבור , כ־ עבור וכ־ עבור . במקרה זה היא מידת לבג־סטילטיס שנוצר על ידי .[15] הקשר בין שני המושגים של רציפות בהחלט קיים גם פה.[16]

ראו גם

לקריאה נוספת

  • Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe (2005), Gradient Flows in Metric Spaces and in the Space of Probability Measures, ETH Zürich, Birkhäuser Verlag, Basel, ISBN 3-7643-2428-73-7643-2428-7
  • Athreya, Krishna B.; Lahiri, Soumendra N. (2006), Measure theory and probability theory, Springer, ISBN 0-387-32903-X0-387-32903-X
  • Leoni, Giovanni (2009), קורס ראשון במרחבי סובולב, לימודי מוסמך במתמטיקה, החברה האמריקאית למתמטיקה, עמ 'xvi + 607ISBN 978-0-8218-4768-8, MR , , MAA
  • Nielsen, Ole A. (1997), An introduction to integration and measure theory, Wiley-Interscience, ISBN 0-471-59518-70-471-59518-7
  • Royden, H.L. (1988), Real Analysis (third ed.), Collier Macmillan, ISBN 0-02-404151-30-02-404151-3

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא רציפות בהחלט בוויקישיתוף   המזהה לא מולא ולא נמצא בוויקינתונים, נא למלא את הפרמטר.

הערות שוליים

  1. ^ Royden 1988, Sect. 5.4, page 108; Nielsen 1997, Definition 15.6 on page 251; Athreya & Lahiri 2006, Definitions 4.4.1, 4.4.2 on pages 128,129. The interval is assumed to be bounded and closed in the former two books but not the latter book.
  2. ^ Nielsen 1997, Theorem 20.8 on page 354; also Royden 1988, Sect. 5.4, page 110 and Athreya & Lahiri 2006, Theorems 4.4.1, 4.4.2 on pages 129,130.
  3. ^ Athreya & Lahiri 2006, before Theorem 4.4.1 on page 129.
  4. ^ Royden 1988, Problem 5.14(a,b) on page 111.
  5. ^ Royden 1988, Problem 5.14(c) on page 111.
  6. ^ Royden 1988, Problem 5.20(a) on page 112.
  7. ^ Royden 1988, Lemma 5.11 on page 108.
  8. ^ Ambrosio, Gigli & Savaré 2005, Definition 1.1.1 on page 23
  9. ^ Ambrosio, Gigli & Savaré 2005, Theorem 1.1.2 on page 24
  10. ^ Equivalence between (1) and (2) is a special case of Nielsen 1997, Proposition 15.5 on page 251 (fails for σ-finite measures); equivalence between (1) and (3) is a special case of the Radon–Nikodym theorem, see Nielsen 1997, Theorem 15.4 on page 251 or Athreya & Lahiri 2006, Item (ii) of Theorem 4.1.1 on page 115 (still holds for σ-finite measures).
  11. ^ Nielsen 1997, Definition 15.3 on page 250; Royden 1988, Sect. 11.6, page 276; Athreya & Lahiri 2006, Definition 4.1.1 on page 113.
  12. ^ Royden 1988, Theorem 11.23 on page 276; Nielsen 1997, Theorem 15.4 on page 251; Athreya & Lahiri 2006, Item (ii) of Theorem 4.1.1 on page 115.
  13. ^ Royden 1988, Proposition 11.24 on page 278; Nielsen 1997, Theorem 15.14 on page 262; Athreya & Lahiri 2006, Item (i) of Theorem 4.1.1 on page 115.
  14. ^ Royden 1988, Problem 12.17(b) on page 303.
  15. ^ Athreya & Lahiri 2006, Sect. 1.3.2, page 26.
  16. ^ Nielsen 1997, Proposition 15.7 on page 252; Athreya & Lahiri 2006, Theorem 4.4.3 on page 131; Royden 1988, Problem 12.17(a) on page 303.

קטגוריה:חשבון אינפיניטסימלי קטגוריה:פונקציות ממשיות ומרוכבות: מאפיינים קטגוריה:רציפות קטגוריה:תורת המידה קטגוריה:אנליזה מתמטית