מצולע משוכלל

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

בגאומטריה, מצולע משוכלל הוא מצולע שכל צלעותיו שוות וכל זוויותיו שוות.

תכונות[עריכת קוד מקור | עריכה]

גדלים[עריכת קוד מקור | עריכה]

למצולע משוכלל בעל \ n צלעות התכונות הבאות:

תכונות נוספות[עריכת קוד מקור | עריכה]

מצולעים משוכללים[עריכת קוד מקור | עריכה]

פאונים[עריכת קוד מקור | עריכה]

ניתן ליצור בעזרת מצולעים משוכללים פאונים. פאון משוכלל הוא פאון בו כל המצולעים זהים, בכול קודקוד מספר שווה של מצולעים ובכל פאה נוגעים מספר שווה של מצולעים. לשם יצירת פאון כזה יש לחבר לפחות שלושה מצולעים סביב קודקוד כך שסכום הזוויות יהיה פחות מ-360 מעלות. האפשרויות לכך הן: לחבר שלושה, ארבעה או חמישה משולשים (מתקבלים ארבעון, תמניון ועשרימון בהתאמה), שלושה ריבועים (מתקבלת קובייה) או שלושה מחומשים (מתקבל תריסרון) מסביב לקודקוד.

חמשת הפאונים האפלטוניים
Tetrahedron.jpg Hexahedron.jpg Octahedron.jpg Dodecahedron.jpg Icosahedron.jpg
טטרהדרון
(ארבעון - 4 פאות)
הקסהדרון
(קובייה - 6 פאות)
אוקטהדרון
(תמניון - 8 פאות)
דודקהדרון
(תריסרון - 12 פאות)
איקוסהדרון
(עשרימון - 20 פאות)

אם מסירים את הדרישה כל הפאות תהיינה חופפות מתקבלים פאונים הנקראים פאונים משוכללים למחצה. אלה כוללים את המנסרות משוכללות, את האנטי-מנסרות משוכללות, את הפאונים ארכימדיים ואת הפאונים המשוכללים שהוזכרו לעיל.

ריצופים[עריכת קוד מקור | עריכה]

אפשר לרצף את המישור בעזרת מצולעים משוכללים. הריצופים המשוכללים הם ריצופים בהם כל האריחים זהים, כך שצלעות נוגעות זו בזו. לשם כך יש לסדר סביב הקודקוד מצולעים שיסגרו את כל הקודוד, כלומר על הזווית לחלק את 360 מעלות. ישנן שלוש אפשרויות לעשות זאת: משולשים, מרובעים ומשושים.

אם משתמשים במצולעים מסוגים שונים (אך מותירים את הדרישה שמצולעים דומים יהיו מגודל זהה ושהריצוף יהיה צלע לצלע) מקבלים בנוסף גם את הריצופים הבאים:

קישורים חיצוניים[עריכת קוד מקור | עריכה]

ויקישיתוף מדיה וקבצים בנושא מצולע משוכלל בוויקישיתוף

הערות שוליים[עריכת קוד מקור | עריכה]