פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

לערך המלא

חידות חיתוך והרכבה הן חידות העוסקות בדרכים שבהן ניתן לחתוך צורה למספר צורות אחרות, לדרכים שבהן ניתן לקחת חלקים ולחבר אותם יחד לצורה חדשה, וכן בחידות המשלבות את שתי הפעולות: כיצד ניתן לחתוך צורה נתונה על מנת להרכיב צורה אחרת מחלקיה.

חידת חיתוך קלאסית היא כיצד ניתן לחלק את הצורה הנקראת L-tromino לשניים, שלושה וארבעה חלקים זהים (בתמונה נראה הפתרון לחלוקה ל-4 חלקים).
חידת חיתוך קלאסית

חידת ההרכבה המפורסמת ביותר היא הטנגרם, ובה ריבוע מחולק ל-7 חלקים שמהם ניתן להרכיב מגוון רב של צורות הכוללות אנשים, בעלי חיים וצמחים. חידה דומה מסוג זה, הנקראת 'סטומכיוון' נחקרה על ידי המדען והמתמטיקאי היווני ארכימדס. המתמטיקאי ההודי הגדול אריאבהטה השתמש בשיטות של חיתוך והרכבה על מנת להוכיח את משפט פיתגורס (הוכחה שנלמדת עד היום בבתי הספר) ולאחריו הופיעו הוכחות רבות נוספות המשתמשות גם הן בחיתוך והרכבה.

Radian cropped color (he).svg

זווית בגודל של רדיאן אחד נוצרת על ידי קשת שהיקפה שווה לאורך של רדיוס המעגל.

ב1637, על שולי עותק של הספר "אריתמטיקה" מאת דיופנטוס, כתב פייר דה פרמה את המשפט הבא: עבור n טבעי גדול מ-2, לא קיימים מספרים טבעיים x,y,z המקיימים את המשוואה: \!\ x^n + y^n = z^n , ללא הוכחה, ובצירוף הערה: "גיליתי הוכחה נפלאה למשפט הזה שהשוליים הללו צרים מלהכיל". המשפט הפך לאחד המשפטים המפורסמים בתורת המספרים, אך לאחר נסיונות כה רבים להוכיח או להפריך אותו, בתחילת המאה ה-20 הוא נראה אתגר קשה עד בלתי אפשרי בעיני קהילת המתמטיקאים. עניין מחודש בבעיה עורר התעשיין היהודי-גרמני פאול וולפסקהל, שהיה מתמטיקאי חובב, והקצה בצוואתו 100,000 מרקים למוכיח המשפט. עם פטירתו וגילוי דבר הצוואה (1908), הפכה הזכייה בפרס וולפשקל ליעדם של חובבים רבים, שטענו שמצאו הוכחה למשפט, אך הוכחתם הייתה שגויה. מכתבים כה רבים ושגויים נשלחו לאוניברסיטת גטינגן כדי לזכות בפרס, עד שפרופסור אדמונד לנדאו נהג לתת לסטודנטים שלו למלא מכתב סטנדרטי עם מספרי העמוד והשורה בהם נמצאה הטעות הראשונה. מרטין גרדנר מספר על שיטות יצירתיות אף יותר: שליחת המכתב בחזרה והפניה לחובבן הקודם ששלח מכתב כבר סמכא, או התשובה "יש לי הפרכה נפלאה להוכחה שלך, אבל לרוע המזל הנייר הזה צר מלהכילה".

Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: Interactive Mathematics Miscellany and Puzzles (באנגלית)

אתר חובה לאוהבי מתמטיקה. זהו אתר עשיר ונפלא, מלא ברעיונות מעניינים מכל תחומי המתמטיקה, בעיות, הוכחות וחידות. דפים רבים כוללים תוכניות Java ו-JavaScript, ההופכות את הביקור באתר לחוויה אינטראקטיבית. באתר הפניות לאתרים מתמטיים נוספים ולספרות מתמטית פופולרית, ולכן הוא מהווה נקודת מוצא מצוינת למי שמחפש מתמטיקה באינטרנט. את האתר הקים אלכסנדר בוגומולני, שאת תואר הדוקטור במתמטיקה קיבל באוניברסיטה העברית בירושלים.

Carl Friedrich Gauss.jpg

יוהאן קרל פרידריך גאוס (גרמנית: Carl Friedrich Gauß, 30 באפריל 1777 - 23 בפברואר 1855) מתמטיקאי, פיזיקאי ואסטרונום גרמני, מגדולי המתמטיקאים של כל הזמנים. גאוס מכונה נסיך המתמטיקאים, והוא מוזכר בנשימה אחת יחד עם ארכימדס וניוטון.

גאוס תרם רבות בתחומי האלגברה, תורת המספרים, גאודזיה, תורת הכבידה, תורת החשמל והמגנטיות, אסטרונומיה, אופטיקה ועוד.

גאוס נולד בבראונשווייג שבסקסוניה תחתית כבן יחיד למשפחת פועלים ענייה. גאוס עצמו סיפר כי עמד על סוד הפעולות האריתמטיות עוד בטרם ידע לדבר. קיימים סיפורים רבים על גאונותו כילד, רובם נחשבים כאגדות. אחד מהם, המובא בספרו של אריק טמפל בל, Men of Mathematics, הוא כי עוד בטרם מלאו לו 3 שנים, נתגלה להוריו כשרונו המתמטי הייחודי: אביו עסק בהכנת גיליון השכר השבועי של הפועלים שבהשגחתו וביצע במשך דקות ארוכות את החישובים המסובכים. כאשר סיים את החישוב, אמר לו בנו שנפלה טעות בחישוב, ונקב בתוצאה שחישב בראשו.

Article MediumPurple.svg
Cquote2.svg

כָּאן יָשֵׁן דִּיוֹפַנְטוֹס לָעַד אֶת שְׁנָתוֹ.
רַק שִׁשִּׁית מֵחַיָּיו נִמְשְׁכָה יַלְדּוּתוֹ.
עוֹד אַחַת-חֶלְקֵי-שְׁתֵּים-עֶשְׂרֵה - צָץ לוֹ זָקָן;
עוֹד שְׁבִיעִית מֵחַיָּיו - וְהִנֵּה הוּא חָתָן.

עוֹד חָמֵשׁ שְׁנוֹת חַיִּים - וְנוֹלַד לוֹ הַבֵּן:
חַי פִּי שְׁנַיִם פָּחוֹת מֵאָבִיו, הַמִּסְכֵּן!
הִזְדַּקֵּן הֶחָכָם בְּאַרְבַּע שְׁנוֹת הַשְּׁכוֹל
אַחֲרֵי מוֹת הַבֵּן - וְיָרַד אֶל הַשְּׁאוֹל.

עוֹבֵר-אֹרַח! כַּבְּדֵהוּ לְפִי תוֹרָתוֹ
וְחַשֵּׁב: בֶּן כַּמָּה הוּא הָיָה בְּמוֹתוֹ?

Cquote3.svg
– מטרודורוס; Anthologia Graeca 14.126; נוסח עברי: אלי בר-יהלום. הפתרון: נסמן את גילו של דיופנטוס בזמן מותו ב-x ונקבל את המשוואה

\frac{1}{6}x +\frac{1}{12}x +\frac{1}{7}x + 5 +\frac{1}{2}x + 4 = x
שפתרונה הוא 84.

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

The queen & the golem.jpg

יוסי שלוסברג, המלכה והגולם - הרפתקאות מתמטיות ותעלומות מחשב, הוצאת עלו-עט, 2011

הספר כולל אוסף נרחב של סיפורים, בעיות וחידות מכל ענפי המתמטיקה ומדעי המחשב. בנוסף לחידות ופתרונותיהן, ניתנים רמזים לסיוע בפתרון חידות קשות. הסיפורים והחידות מקובצים לפי נושאים, ובהם:

ורבים אחרים.

תירס

אתם עומדים במרכזו של שדה תירס בלילה ללא כוכב וירח. התירס הגבוה מסתיר את כל שמימינכם ומשמאלכם. עליכם להגיע למסילת רכבת ישרה הנמצאת במרחק 10 קילומטרים מכם. בשל הראות הלקויה, רק כאשר תגיעו למסילה תדעו זאת. מצאו את המסלול הקצר ביותר אותו תצטרכו לעבור עד להגעה לפסים המיוחלים במקרה הגרוע ביותר (כלומר במקרה בו מזלכם פועל נגדכם).

פתרון

הפתרון הראשון שחושבים עליו לחידה הוא ללכת 10 ק"מ לכיוון כלשהו, ולאחר מכן להקיף את המעגל, ובמקרה זה צריך ללכת 72.83 ק"מ. ניתן לשפר פתרון זה בצורה משמעותית, והמפתח למציאת הפתרון נמצא ב-"thinking outside the box" (או ליתר דיוק, "the circle"). המסלול הקצר ביותר הוא המסלול הבא:

  • יוצאים להיקף המעגל בנקודה שרירותית כלשהי. (10 ק"מ)
  • כעת ממשיכים בקו ישר עוד כברת דרך, עד שהמרחק ממרכז המעגל הוא R×csc 60° כלומר, 11.55 ק"מ.
  • כעת צועדים לאורך המשיק מהנקודה הנוכחית עד שמגיעים למעגל. כלומר, עוד R×cot 60°. המרחק מתחילת הדרך - 17.32 ק"מ.
  • הולכים על גבי המעגל לאורך קשת בת 210°. המרחק הכולל - 53.97 ק"מ.
  • יוצאים מהמעגל על גבי משיק, עד אשר נתקלים בקו המקווקו (המשיק למעגל). סך הכל - 63.97 ק"מ.

אם טרם נתקלתם בפסי הרכבת, רימו אתכם!

שישים מעלות טובות


לחידות נוספות, לחידות קשות יותר
משפטים מפורסמים

המשפט האחרון של פרמהמשפט פיתגורסמשפטי האי-שלמות של גדלהמשפט היסודי של האריתמטיקה
מיון החבורות הפשוטותמשפט ארבעת הריבועים של לגראנז'משפט המינימקסמשפט השאריות הסיני
לרשימת המשפטים

השערות מפורסמות

השערת גולדבךהשערת רימןהשערת פואנקרההשערת הראשוניים התאומיםמשפט ארבעת הצבעיםP=NP
לרשימת הבעיות הפתוחות במתמטיקה

מבט אל הלוח – משפט או השערה מפורסמים

משפט ארבעת הריבועים של לגראנז' הוא מן התוצאות הקלאסיות והאלגנטיות בתורת המספרים. המשפט, אותו הוכיח ז'וזף לואי לגראנז' ב-1770, קובע שכל מספר טבעי אפשר לכתוב כסכום של ארבעה ריבועים: לכל מספר טבעי n אפשר למצוא מספרים שלמים a,b,c,d, כך ש- \ n = a^2+b^2+c^2+d^2. לדוגמה, \ 107=8^2+5^2+3^2+3^2.

לערך המלא

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

טופולוגיה היא ענף חדש יחסית במתמטיקה. הטופולוגיה עוסקת בתכונות הנוגעות לצורתם של עצמים מופשטים, ומתמקדת בתכונות הנשמרות גם לאחר הפעלת פונקציות שעונות לארבעת הקריטריונים - פונקציות חד חד ערכיות, על, רציפות ובעלות פונקציה הופכית רציפה. פונקציות שכאלו מכונות הומיאומורפיזמים ועצמים שניתן לעבור מהאחד לשני באמצעותן מכונים הומיאומורפיים. בלשון ציורית, ההבדל בין עצמים אלו הן התכונות שנשמרות גם לאחר הפעלת "עיוות", "מתיחה" ו"כיווץ" - למשל, עיגול ומרובע הם הומיאומורפיים, כי ניתן לעקם את המרובע עד לקבלת עיגול, ולהפך. לעומת זאת, צורת הספרה 8 ומעגל אינם הומיאומורפיים, כי בספרה 8 ישנם שני חורים, ובמעגל חור אחד בלבד.

לערך המלא

לרשימת כל הערכים בתחום

מבט על תחומים נוספים

משפטים מתמטיים חשובים ושימושיים - נוסחאות בגאומטריה - רשימת נוסחאות בטריגונומטריה - נוסחאות גזירה - חוקי הלוגריתמים

P computing.svg
P At sign.png
P physics-2.png
P chemistry.svg
P Economy.png
P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב

ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים