פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

לערך המלא

משולש על משטח בגאומטריה היפרבולית. פיתוח הגאומטריה הלא אוקלידית העקבית במאה ה-19 הדגיש את חשיבותו של השימוש באקסיומות כנגד החשיבה האינטואיטיבית.

הפילוסופיה של המתמטיקה היא ענף של הפילוסופיה העוסק בהנחות היסוד של המתמטיקה ובמשמעותה של המתמטיקה. הפילוסופיה של המתמטיקה מנסה לתת תשובות לשאלות כגון:

Von Koch curve.gif
בנייה של פתית השלג של קוך, פרקטל שתואר לראשונה על ידי הלגה פון קוך.
גאורג קנטור

השערת הרצף, שניסח מייסד תורת הקבוצות, גאורג קנטור, נחשבה לאחת הבעיות הפתוחות, החשובות במתמטיקה, ואף הייתה הראשונה ברשימת 23 הבעיות הפתוחות של המתמטיקה, שמנה דויד הילברט בשנת 1900. משך שנים קנטור ואחרים ניסו להוכיח את ההשערה, או להפריכה, אך לא הצליחו לעשות זאת. רק בשנת 1937 חלה התקדמות מסוימת במעמדה, כאשר קורט גדל הצליח להוכיח כי הנחת אמיתותה משתלבת במערכת האקסיומות המתמטיות המקובלות בלי לערערה. עם זאת, ב-1963, הראה פול כהן כי גם ההנחה ההפוכה, השוללת את השערת הרצף, משתלבת באותה מערכת בלי לערערה. כך בעצם הוכח שהשערת הרצף היא טענה מתמטית שאמיתותה אינה תלויה ביתר האקסיומות המקובלות, ובעצם היא טענה שלא ניתן להפריכה ולא ניתן להוכיחה.

Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: The Geometry Junkyard (באנגלית)

אתר מקסים המרכז הפניות לנושאים הקשורים לשעשועי מתמטיקה גאומטריים ברשת.

אייזק ניוטון

סר אייזק ניוטוןאנגלית: Isaac Newton;‏ 4 בינואר 1643 - 31 במרץ 1727 היה פיזיקאי, מתמטיקאי, אסטרונום, פילוסוף ואלכימאי אנגלי, הנחשב לאחד מגדולי המוחות המדעיים בכל הזמנים.

חיבורו "היסודות המתמטיים של פילוסופיית הטבע" שפורסם ב-1687 הכיל תיאור של כוח הכבידה ושלושת חוקי התנועה, והניח את הבסיס למכניקה הקלאסית ששלטה בראייה המדעית של היקום הפיזיקלי במשך שלוש המאות הבאות ויצרה את הבסיס להנדסה המודרנית.

ניוטון נחשב לאבי החשבון הדיפרנציאלי והאינטגרלי, הציג לראשונה את משפט הבינום המוכלל (אשר נקרא על שמו - הבינום של ניוטון), המתאר את טור טיילור של הפונקציה \ (1+x)^{\alpha} גם כאשר \ \alpha אינו שלם, הוא פיתח והציג את זהויות ניוטון, שיטת ניוטון-רפסון למציאה נומרית של שורשי פונקציה, התורה של פולינומים ממעלה שלישית בשני משתנים, תרם תרומות חשובות לתורה של הפרשים סופיים והיה הראשון שהשתמש באינדקסים חלקיים ובגאומטרית קוארדינטות כדי לגזור פתרונות למשוואה דיופנטית. ניוטון החל גם לפתח את חשבון הווריאציות, תחום שקיבל שם זה רק במאה ה-18. כמו כן גילה נוסחה חדשה לחישוב π.

Article MediumPurple.svg
Cquote2.svg

יצירת מספרים אקראיים היא פעולה חשובה מכדי להניח אותה ליד המקרה.

Cquote3.svg
רוברט קוביו

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

How to Lie with Statistics.jpg

Darrell Huff, How to Lie with Statistics, 1954

ספר קטן זה (124 עמודים במהדורת ספרי פינגווין) הוא מבוא מזורז לסטטיסטיקה, ובפרט לכשלים הרבים האורבים למי שאינו משתמש בה נכון, ולשלל הדרכים שבהם ניתן להשתמש בה לשם הצגת מידע מטעה. כיוון שמידע סטטיסטי משמש פעמים רבות בסיס לקבלת החלטות, הרי הכרת כשלים והטעיות אלה מסייעת לקבלת החלטות טובות יותר. הספר נראה כמדריך לשימוש בסטטיסטיקה למטרות הטעיה, אך המחבר מסביר: "הנוכלים כבר יודעים את כל הטריקים; על אנשים הגונים ללמוד אותם לשם הגנה עצמית". הספר הפך לרב מכר, שמגרסתו המקורית, באנגלית, נמכרו יותר מ-1.5 מיליון עותקים, יותר מכל מכל ספר סטטיסטיקה אחר.

ראו גם: יוסי לוי, איך לשקר בעזרת סטטיסטיקה, באתר "נסיכת המדעים"

נסו להגיע לתוצאה 26 עם המספרים 2, 3, 4 ו-5 תוך שימוש בפעולות מתמטיות כאשר ניתן להשתמש בכל פעולה ובכל מספר פעם אחת בלבד.

פתרון

להלן מספר פתרונות:

  • \ 4-3+5^2
  • \ (3/2+5)*4


לחידות נוספות, לחידות קשות יותר
משפטים מפורסמים

המשפט האחרון של פרמהמשפט פיתגורסמשפטי האי-שלמות של גדלהמשפט היסודי של האריתמטיקה
מיון החבורות הפשוטותמשפט ארבעת הריבועים של לגראנז'משפט המינימקסמשפט השאריות הסיני
לרשימת המשפטים

השערות מפורסמות

השערת גולדבךהשערת רימןהשערת פואנקרההשערת הראשוניים התאומיםמשפט ארבעת הצבעיםP=NP
לרשימת הבעיות הפתוחות במתמטיקה

מבט אל הלוח – משפט או השערה מפורסמים

המשפט היסודי של החשבון הדיפרנציאלי והאינטגרלי (נקרא גם המשפט היסודי של החשבון האינפיניטסימלי) קושר בין שני מושגי היסוד של החשבון האינפיניטסימלי, הנגזרת והאינטגרל, ומראה שגזירה ואינטגרציה הן פעולות הופכיות זו לזו: אם פונקציה רציפה עוברת אינטגרציה ואחר כך גוזרים את התוצאה, חוזרים לפונקציה המקורית. פרט לקשר זה, המשפט גם מספק שיטה מעשית לחישוב האינטגרל המסוים, שהוא מושג שמוגדר בצורה שאינה מאפשרת חישוב פשוט, באמצעות האינטגרל הלא מסוים, שלחישובו יש דרכים רבות.

המשפט היסודי של החשבון האינפיניטסימלי קובע שאינטגרל מסוים בין שתי נקודות שווה להפרש הערכים של האינטגרל הלא המסוים שלה בנקודות אלו. לכאורה שני מושגים אלה שונים זה מזה ובאים מעולמות שאין להם שום קשר אבל המשפט היסודי של החשבון האינפיניטסימלי (שנקרא גם משפט ניוטון-לייבניץ) קובע את הקשר העמוק בין שני התחומים.

לערך המלא

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

תורת הקבוצות היא ענף במתמטיקה העוסק בתכונותיהן של קבוצות, ומשמש כבסיס לאקסיומטיזציה של המתמטיקה. תורת הקבוצות מניחה את היסודות לחלקים נרחבים של המתמטיקה, כאשר מהאקסיומות שלה נובעים המשפטים הבסיסיים שעליהם חלקים אלה מתבססים. בין היתר תורת הקבוצות דנה במושג הסדר של קבוצה (הגדרה ופיתוח הנושא של סדר האיברים בקבוצה), הגודל - העוצמה שלה (מבחינה אינטואיטיבית - כמה איברים יש בקבוצה), ובבניית מערכות המספרים הבסיסיות והוכחת תכונותיהן - הטבעיים, השלמים, הרציונליים, הממשיים והמרוכבים.

הענף התפתח אינטואיטיבית עם השנים על ידי מתמטיקאים חובבנים ומקצועיים כאחד, בשיטה שמאוחר יותר התגלתה כלא אמינה. הבעיה התחילה כאשר נמצאו פרדוקסים וסתירות בשלבים בסיסיים של המתמטיקה (לדוגמה הפרדוקס של ראסל). סתירות אלו נובעות מחוסר עקביות, מוסכמות ושפה אחידה, ולכן החליטו לפתח ולהגדיר את תורת הקבוצות מחדש.

  • תורת הקבוצות הנאיבית: ניסוח אינטואיטיבי של הרעיונות היסודיים של תורת הקבוצות, כפי שהתפתחה במשך השנים.
  • תורת הקבוצות האקסיומטית: גרסה פורמלית, בעלת ביסוס אקסיומטי מוצק, של תורת הקבוצות, שפותחה כדי למנוע סתירות ופרדוקסים כדוגמת הפרדוקס של ראסל.
למונחון
לרשימת כל הערכים בתחום

מבט על תחומים נוספים

משפטים מתמטיים חשובים ושימושיים - נוסחאות בגאומטריה - רשימת נוסחאות בטריגונומטריה - נוסחאות גזירה - חוקי הלוגריתמים

P computing.svg
P At sign.png
P physics-2.png
P chemistry.svg
P Economy.png
P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב

ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים