פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

לערך המלא

Arithmetic symbols2.svg

ארבע פעולות החשבון הן פעולות החשבון הבסיסיות ביותר, השימושיות בחיי היומיום של מרבית בני האדם. פעולות אלה נלמדות בתחילת לימודי המתמטיקה בבית הספר היסודי, וחרף פשטותן היחסית, נדרשת לביצוען מידה מסוימת של הפשטה.

ארבע פעולות החשבון הן חיבור, חיסור, כפל וחילוק. כל אחת מפעולות אלה היא פעולה בינארית, כלומר פונקציה הפועלת על שני מספרים, אך ניתן לכתוב ביטויים הכוללים מספרים רבים ופעולות רבות. במקרה זה נחוצים כללים לקביעת סדר ביצוע הפעולות (פעולה קרויה גם אופרטור, ומספרים שעליהם היא פועלת קרויים אופרנדים). הכלל הראשון קובע שפעולות כפל וחילוק קודמות לפעולות חיבור וחיסור. כדי לבצע את הפעולות בסדר שונה מהאמור בכלל זה יש להשתמש בסוגריים. לאחר שני כללים אלה, הפעולות מתבצעות משמאל לימין.

באלגברה מופשטת מעוניינים לחקור את תכונותיהן של פעולות שמוגדרות על קבוצות כלשהן, לא בהכרח של מספרים, אך שמזכירות את פעולות החשבון על המספרים.

End of universe.jpg

משולש, כפי שהוא נראה במערכות גאומטריות שונות. המשולש התחתון הנו משולש המתקיים בגאומטריה האוקלידית. המשלוש האמצעי מתקיים בגאומטריה היפרבולית והעליון בגאומטריה ספירית.

בול סובייטי עם תמונתו של אל חואריזמי

המושג "אלגוריתם", מונח מרכזי במדעי המחשב, נגזר משמו של מוחמד אבן מוסא אל-ח'ואריזמי, מתמטיקאי שחי בבגדאד במאה התשיעית. כאשר ספרו על שיטות חישוב תורגם ללטינית, נכתב שמו של אל ח'ואריזמי כ"אלגוריטמי", והקוראים טעו לחשוב שמדובר בצורת רבים של המושג שיטת חישוב. המילה אלגברה נלקחה מספר אחר שלו - "חיסאב אל-ג'אבר ואל-מוקאבלה". על פי הספר, פעולת ההשלמה, אל-ג'אבר, היא אחת משתי הפעולות שניתן לבצע על משוואה על מנת לפשט אותה.

Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: NRICH (באנגלית)

אתר בריטי להעשרה מתמטית, למורים ולתלמידים, ובו שלל חידות ומשחקים.

Aumann-1080.jpg

פרופ' ישראל אוֹמַן (Robert J. Aumann), נולד ב-8 ביוני 1930, מתמטיקאי ישראלי, חתן פרס נובל לכלכלה לשנת 2005. תחום מחקרו העיקרי הוא תורת המשחקים.

אומן נולד בעיר פרנקפורט שבגרמניה. משפחתו היגרה לארצות הברית ב-1938, כחודשיים לפני ליל הבדולח. אומן הנו בעל אזרחות אמריקאית בנוסף לזו הישראלית וחבר באקדמיה הלאומית למדעים של ארצות הברית.

למד בישיבה תיכונית במנהטן, ואחר כך למד לתואר ראשון במתמטיקה בניו יורק סיטי קולג' ולתואר שני ותואר דוקטור במכון הטכנולוגי של מסצ'וסטס (MIT). ב-1955 עבר לאוניברסיטת פרינסטון, שם חקר את תורת המשחקים, שהייתה תחום מחקר חדש באותה העת. בשנת 1956 עלה לישראל והתיישב בירושלים.

פרופסור אומן זכה בפרס נובל לכלכלה על עבודתו בתחום תורת המשחקים, שהיא ענף מתמטי שמטרתו לחקור מצבי עימות ואסטרטגיות לקבלת החלטות. אומן נחשב למייסדם של כמה ענפים בתורת המשחקים. הוא הראשון שניתח באופן מאורגן סדרות של משחקים, כשהוא מראה כיצד עצם החזרה על אותו מצב יכולה לאכוף התנהגות של שיתוף פעולה, גם כאשר המשחק הבודד אינו מעודד התנהגות כזו. בעקבות עבודתו, משתמשים כלכלנים בשיטות מתחום תורת המשחקים לניתוח מצבים מתמשכים של ניגוד אינטרסים, כמו מלחמות מחירים בין יצרנים המתחרים על אותו שוק.

Article MediumPurple.svg
Cquote2.svg

בסיס 8 הוא למעשה כמו בסיס 10. אם חסרות לך שתי אצבעות

Cquote3.svg
טום לרר

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Arnon avron - godel.jpg

ארנון אברון, ‏משפטי גדל ובעיית היסודות של המתמטיקה, סדרת אוניברסיטה משודרת, בהוצאת משרד הביטחון - ההוצאה לאור, 1998

כשאר הספרים בסדרת אוניברסיטה משודרת, גם ספר זה מבוסס על הרצאות שנתן מחברו בגלי צה"ל. הספר עוסק בחקר יסודות המתמטיקה, שזכה למחקר אינטנסיבי בעשורים הראשונים של המאה העשרים והגיע לשיאו במשפטי האי שלמות של גדל. הספר עוסק בנושאים מתחום ההיסטוריה של המתמטיקה והפילוסופיה של המתמטיקה. המחבר, ארנון אברון, הוא פרופסור בחוג למדעי המחשב באוניברסיטת תל אביב. בפתח דבר לספרו הוא מציין שהספר "פונה הן לקוראים החסרים כמעט כל רקע מתימטי והן למתמטיקאים מקצועיים שהנושאים הנידונים כאן אינם שייכים לתחומי התמחותם".

בנובמבר 2010 הודיע האנטר ווק, מנהל מוצר באתר YouTube, כי מדי דקה מועלים לאתר סרטוני וידאו באורך כולל של 35 שעות (מקור: אנשים ומחשבים). טוביה הוא צופה נלהב באתר YouTube, והוא נחוש בדעתו שלא להחמיץ אף סרטון שבאתר, נוכחי או עתידי (מובן שברגע נתון טוביה צופה רק בסרטון אחד). מה התנאי שיש לקיים, כדי שטוביה יצליח להגשים את רצונו?

פתרון

אם טוביה יזכה לחיי נצח, הוא יגשים את רצונו ללא כל קושי. בתורת הקבוצות, מאפיין מובהק של קבוצה אינסופית הוא יכולתה להיות שקולה (כלומר בעלת אותה עוצמה) לתת קבוצה שלה השונה ממנה. במקרה שלפנינו, לכל דקה באתר YouTube ניתן לקבוע, באמצעות התאמה חד-חד ערכית, את הדקה שבה טוביה יצפה בה: את הסרטונים שהועלו בדקה הראשונה יראו טוביה ב-35 השעות הראשונות, את הסרטונים שהועלו בדקה השנייה יראו טוביה ב-35 השעות הבאות, וכך הלאה. גם בשיטה זו לעולם לא יוכל טוביה לראות את כל סרטוני הווידאו, משום שבכל זמן נתון ישארו סרטונים רבים שהוא טרם צפה בהם.

ראו גם: המלון של הילברט; גבול של סדרת קבוצות (אנ').


לחידות נוספות, לחידות קשות יותר
משפטים מפורסמים

המשפט האחרון של פרמהמשפט פיתגורסמשפטי האי-שלמות של גדלהמשפט היסודי של האריתמטיקה
מיון החבורות הפשוטותמשפט ארבעת הריבועים של לגראנז'משפט המינימקסמשפט השאריות הסיני
לרשימת המשפטים

השערות מפורסמות

השערת גולדבךהשערת רימןהשערת פואנקרההשערת הראשוניים התאומיםמשפט ארבעת הצבעיםP=NP
לרשימת הבעיות הפתוחות במתמטיקה

מבט אל הלוח – משפט או השערה מפורסמים

אי-שוויון ברנולי הוא אי-שוויון יסודי ושימושי באנליזה מתמטית, המאפשר להעריך את הביטוי \ (1+x)^n. האי-שוויון קובע ש- \ (1+x)^n\geq 1+nx לכל מספר שלם \ n\geq 0 ולכל מספר ממשי \ x>-1. את האי-שוויון אפשר להוכיח באינדוקציה.

בעזרת אי-שוויון זה אפשר להראות שהסדרה \ (1+\frac{1}{n})^n עולה בזמן שהסדרה \ (1+\frac{1}{n})^{n+1} יורדת, וכך להגדיר את בסיס הלוגריתם הטבעי, \ e=2.718..., כגבולן המשותף.

לערך המלא

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

טריגונומטריהיוונית trigōnon "משולש" + metron "מדידה") היא ענף במתמטיקה העוסק בקשר שבין זוויות וצלעות. את הקשרים האלו מאפיינים על ידי הפונקציות הטריגונומטריות, כאשר רוב העיסוק בתחום מתמקד באפיון תכונותיהן. הפונקציות הטריגונומטריות הבסיסיות הן הסינוס והקוסינוס. לטריגונומטריה שימושים רבים במתמטיקה, הן בממתטיקה טהורה והן במתמטיקה שימושית, ובתחומים רבים במדעי הטבע והטכנולוגיה.

לערך המלא

לרשימת כל הערכים בתחום

מבט על תחומים נוספים

משפטים מתמטיים חשובים ושימושיים - נוסחאות בגאומטריה - רשימת נוסחאות בטריגונומטריה - נוסחאות גזירה - חוקי הלוגריתמים

P computing.svg
P At sign.png
P physics-2.png
P chemistry.svg
P Economy.png
P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב

ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים