פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

לערך המלא

‏‏
הדגמת הטענה "סכומם של n המספרים האי-זוגיים הראשונים הוא המספר הריבועי העומד במקום n".

אינדוקציה מתמטית היא שיטה לוגית המאפשרת להוכיח שתכונה מסוימת משותפת לכל המספרים הטבעיים. האינדוקציה מורכבת משני טיעונים: ראשית, שהמספר 1 מקיים את התכונה, ושנית, שאם מספר טבעי n מקיים אותה, אז גם המספר n+1 מקיים אותה. עקרון האינדוקציה מחליף סדרה אינסופית של הוכחות סופיות (אחת לכל מספר טבעי), בהוכחה סופית אחת המספיקה לכל המקרים.

את המונח "אינדוקציה מתמטית" הציע הלוגיקן אוגוסטוס דה-מורגן, כשכתב את הערך "אינדוקציה (מתמטיקה)" בציקלופדיית פני ב-1838. השיטה עצמה הופיעה בצורתה המודרנית אצל בלז פסקל (1654), אם כי אפשר לזהות ניצנים של השיטה אצל מתמטיקאים שקדמו לו.

גמישותה של שיטת האינדוקציה הפכה אותה לאחד מכלי ההוכחה החזקים ביותר בארגז הכלים של כל מתמטיקאי.


R hand Rule.png

מכפלה וקטורית היא פעולה בינארית על שני וקטורים במרחב תלת ממדי, שמחזירה וקטור. בתמונה מופיע כלל עזר למציאת כיוונה המוכר בשם "כלל יד ימין": אם האצבעות מתוות את הקשת הקצרה מהווקטור הראשון לווקטור השני, האגודל מצביע בכיוון תוצאת המכפלה.

גאורג קנטור

השערת הרצף, שניסח מייסד תורת הקבוצות, גאורג קנטור, נחשבה לאחת הבעיות הפתוחות, החשובות במתמטיקה, ואף הייתה הראשונה ברשימת 23 הבעיות הפתוחות של המתמטיקה, שמנה דויד הילברט בשנת 1900. משך שנים קנטור ואחרים ניסו להוכיח את ההשערה, או להפריכה, אך לא הצליחו לעשות זאת. רק בשנת 1937 חלה התקדמות מסוימת במעמדה, כאשר קורט גדל הצליח להוכיח כי הנחת אמיתותה משתלבת במערכת האקסיומות המתמטיות המקובלות בלי לערערה. עם זאת, ב-1963, הראה פול כהן כי גם ההנחה ההפוכה, השוללת את השערת הרצף, משתלבת באותה מערכת בלי לערערה. כך בעצם הוכח שהשערת הרצף היא טענה מתמטית שאמיתותה אינה תלויה ביתר האקסיומות המקובלות, ובעצם היא טענה שלא ניתן להפריכה ולא ניתן להוכיחה.

Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: אלף אפס

"אלף אפס" הוא האתר של רבעון בשם זה, שיצא לאור, ב-23 גיליונות, על ידי החוג למתמטיקה במכללה ירושלים. הרבעון והאתר לוקחים את המתמטיקה בקלות. האתר מכיל חידות מקסימות ברמות שונות ומאמרים שלא נכללים בחומר של בחינות הבגרות אבל כיף לקרוא אותם.

לאונרד אוילר

לאונרד אוילר (Leonhard Euler)‏ (15 באפריל 1707 - 18 בספטמבר 1783), מתמטיקאי ופיזיקאי שווייצרי מוביל, שבילה את רוב חייו ברוסיה ובגרמניה. הוא פרסם יותר עבודות במתמטיקה מאשר כל מתמטיקאי אחר בהיסטוריה. אוילר ביצע תרומות ותגליות בתחומים מגוונים, כמו חדו"א ותורת הגרפים. הוא גם הציג חלק נכבד מן המינוחים וסימני המתמטיקה המודרניים, במיוחד בתחום האנליזה מתמטית, כדוגמת סימון הפונקציה. כמו כן, הוא ידוע בזכות עבודתו במכניקה, באופטיקה ובאסטרונומיה.

אוילר נחשב למתמטיקאי המוביל של המאה ה-18 ולאחד מהבולטים ביותר בכל הזמנים. הוא היה המתמטיקאי הפורה ביותר בהיסטוריה: הוא פרסם 886 ספרים ומאמרים בימי חייו. ישנם 60-80 מושגים במתמטיקה הנקראים על שמו. אמרה המיוחסת לפייר סימון לפלס באה לתאר את גדולתו והשפעתו של אוילר במתמטיקה: "למדו מאוילר, למדו מאוילר, הוא המאסטר של כולנו".

Article MediumPurple.svg
Cquote2.svg

ישנם שלושה סוגי שקרים: שקרים, שקרים ארורים וסטטיסטיקה

Cquote3.svg
בנימין ד'יזראלי

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Mathematics life.jpg

דויד ברגמיני והעורכים של לייף, מתימטיקה, הספרייה המדעית של לייף, תרגום עמוס כרמל, הוצאת ספריית מעריב, 1970.

הספר סוקר את התחומים העיקריים במתמטיקה ומשלב בסקירה מידע מההיסטוריה של המתמטיקה, תוך שימת דגש על האישים הבולטים. כיתר הספרים בסדרת TIME-LIFE הספר עשיר בתצלומים צבעוניים, באיורים ובתרשימים. קריאתו אינה מצריכה ידע מתמטי.

Shirley Strickland.jpg

ארבעה רצים עומדים בארבע פינות ריבוע שאורך צלעו 100 מטרים, ברגע מסוים מתחילים כל ארבעת הרצים לרוץ, כך שרץ 1 רודף אחרי רץ 2, רץ 2 רודף אחרי רץ 3, רץ 3 רודף אחרי רץ 4 ורץ 4 רודף אחרי רץ 1. כל אחד מהרצים רץ במהירות של 5 מטרים לשנייה, ובכיוון המדויק של הרץ אחריו הוא רודף. האם הרצים יפגשו? היכן ומתי?

פתרון

תבנית הריבוע שהרצים נמצאים בה בתחילת ריצתם נשמרת בכל משך הריצה, אך הריבוע מסתובב ומתכווץ תוך כדי הריצה. לפיכך, בכל רגע נתון כל רודף ובורח רצים בכיוונים מאונכים, כלומר ריצתו של הרץ הבורח אינה משפיעה על המרחק שלו מן הרודף - הזמן שלו זקוק הרודף כדי לתפוס את הבורח זהה לזמן שהיה נחוץ למשימה זו לוּ הבורח היה עומד במקומו ללא תנועה. כיוון שהמרחק הראשוני בין כל שני רצים הוא 100 מטרים, והרץ הרודף מצמצם את המרחק ב-5 מטרים בכל שנייה, הרצים יפגשו לאחר 20 שניות. כיוון שמסלוליהם של כל הרצים זהים קל להראות שנקודת המפגש תהיה במרכז הריבוע. המסלול שעובר כל רץ הוא ספירלה לוגריתמית שאורכה 100 מטרים.

חידה זו, שבה ארבע חיפושיות רודפות זו אחר זו, הופיעה במדורו של מרטין גרדנר בגיליון נובמבר 1957 של הירחון סיינטיפיק אמריקן, ולאחר מכן נכללה בלקט מדוריו Mathematicl Puzzles and Diversions. בגיליון יולי 1965 של כתב העת, שבו עסק גרדנר באופ ארט, הופיע תרשים המתבסס על מסלולן של החיפושיות, ומהווה יצירת אופ ארט.

חידת בונוס: כמה סיבובים יבצע כל אחד מן הרצים סביב נקודת המפגש בטרם יגיע אליה?

פתרון

אינסוף

לחידות נוספות, לחידות קשות יותר
משפטים מפורסמים

המשפט האחרון של פרמהמשפט פיתגורסמשפטי האי-שלמות של גדלהמשפט היסודי של האריתמטיקה
מיון החבורות הפשוטותמשפט ארבעת הריבועים של לגראנז'משפט המינימקסמשפט השאריות הסיני
לרשימת המשפטים

השערות מפורסמות

השערת גולדבךהשערת רימןהשערת פואנקרההשערת הראשוניים התאומיםמשפט ארבעת הצבעיםP=NP
לרשימת הבעיות הפתוחות במתמטיקה

מבט אל הלוח – משפט או השערה מפורסמים

השערת גולדבך היא השערה בתורת המספרים, שלפיה כל מספר זוגי גדול מ-4 ניתן להציג כסכום של שני מספרים ראשוניים.

השערת גולדבך נבדקה באמצעות מחשב ונמצאה נכונה לכל מספר עד \ 2 \cdot 10^{17}. ההערכה המקובלת היא שההשערה נכונה, בהתבסס על התפלגותם של המספרים הראשוניים: ככל שמספר זוגי גדול יותר, כך סביר יותר שניתן להציגו כסכום של שני ראשוניים. מובן שזו אינה הוכחה.

לערך המלא

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

אנליזה נומרית (או חישוב נומרי) היא ענף של מתמטיקה שימושית אשר חוקר את השיטות והאלגוריתמים למציאה או הערכה של פתרונות מספריים לבעיות מתמטיות שונות, על ידי שימוש במספר סופי של פעולות חשבון ופעולות לוגיות.

אנליזה נומרית מאפשרת לפתור בעיות כמו אינטגרלים של פונקציות לא אנליטיות, מציאת שורשים של פונקציות (למשל פולינומים ממעלה גבוהה, פונקציות טריגונומטריות וכדומה) ובעיות אחרות שקשה עד בלתי אפשרי למצוא להן פתרון אנליטי המתאים לכל פרמטר אפשרי.

למרות שאנליזה נומרית עושה שימוש באקסיומות, תאוריות והוכחות תאורטיות, היא יכולה להשתמש בתוצאות אמפיריות של חישובי מחשב על מנת לחקור שיטות חדשות ולנתח בעיות. בכך היא ייחודית בהשוואה לתחומי מתמטיקה אחרים.

לערך המלא

לרשימת כל הערכים בתחום

מבט על תחומים נוספים

משפטים מתמטיים חשובים ושימושיים - נוסחאות בגאומטריה - רשימת נוסחאות בטריגונומטריה - נוסחאות גזירה - חוקי הלוגריתמים

P computing.svg
P At sign.png
P physics-2.png
P chemistry.svg
P Economy.png
P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב

ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים