פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

לערך המלא

Arithmetic symbols2.svg

ארבע פעולות החשבון הן פעולות החשבון הבסיסיות ביותר, השימושיות בחיי היומיום של מרבית בני האדם. פעולות אלה נלמדות בתחילת לימודי המתמטיקה בבית הספר היסודי, וחרף פשטותן היחסית, נדרשת לביצוען מידה מסוימת של הפשטה.

ארבע פעולות החשבון הן חיבור, חיסור, כפל וחילוק. כל אחת מפעולות אלה היא פעולה בינארית, כלומר פונקציה הפועלת על שני מספרים, אך ניתן לכתוב ביטויים הכוללים מספרים רבים ופעולות רבות. במקרה זה נחוצים כללים לקביעת סדר ביצוע הפעולות (פעולה קרויה גם אופרטור, ומספרים שעליהם היא פועלת קרויים אופרנדים). הכלל הראשון קובע שפעולות כפל וחילוק קודמות לפעולות חיבור וחיסור. כדי לבצע את הפעולות בסדר שונה מהאמור בכלל זה יש להשתמש בסוגריים. לאחר שני כללים אלה, הפעולות מתבצעות משמאל לימין.

באלגברה מופשטת מעוניינים לחקור את תכונותיהן של פעולות שמוגדרות על קבוצות כלשהן, לא בהכרח של מספרים, אך שמזכירות את פעולות החשבון על המספרים.

Beijing-Mean-Value-Theorem-3733.jpg
שלט בחוצות בייג'ינג המציג את משפט הערך הממוצע של לגראנז'.

אם מכונית עוברת מרחק של 100 קילומטר בשעתיים, בהכרח היה רגע במהלך הנסיעה שבו מהירותה הייתה בדיוק 50 קמ"ש. תוצאה זו מובטחת על ידי משפט הערך הממוצע של לגראנז' הקובע כי עבור פונקציה רציפה וגזירה בתחום מסוים, קיימת בהכרח נקודה בה קצב ההשתנות הממוצע של הפונקציה (במקרה הזה העתק לפי זמן או "מהירות ממוצעת") שווה לקצב ההשתנות הרגעי של הפונקציה (המהירות הנקודתית).

Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: USA Mathematical Talent Search (באנגלית)

אתר של חידות ובעיות מתמטיות, חלקן קשות למדי, אף שהן מבוססות על מתמטיקה תיכונית. האתר נתמך על ידי ה-NSA, גוף המודיעין הגדול בעולם, שפיתוח הכישורים המתמטיים מבטיח לו את עובדיו העתידיים.

Carl Friedrich Gauss.jpg

יוהאן קרל פרידריך גאוס (גרמנית: Carl Friedrich Gauß, 30 באפריל 1777 - 23 בפברואר 1855) מתמטיקאי, פיזיקאי ואסטרונום גרמני, מגדולי המתמטיקאים של כל הזמנים. גאוס מכונה נסיך המתמטיקאים, והוא מוזכר בנשימה אחת יחד עם ארכימדס וניוטון.

גאוס תרם רבות בתחומי האלגברה, תורת המספרים, גאודזיה, תורת הכבידה, תורת החשמל והמגנטיות, אסטרונומיה, אופטיקה ועוד.

גאוס נולד בבראונשווייג שבסקסוניה תחתית כבן יחיד למשפחת פועלים ענייה. גאוס עצמו סיפר כי עמד על סוד הפעולות האריתמטיות עוד בטרם ידע לדבר. קיימים סיפורים רבים על גאונותו כילד, רובם נחשבים כאגדות. אחד מהם, המובא בספרו של אריק טמפל בל, Men of Mathematics, הוא כי עוד בטרם מלאו לו 3 שנים, נתגלה להוריו כשרונו המתמטי הייחודי: אביו עסק בהכנת גיליון השכר השבועי של הפועלים שבהשגחתו וביצע במשך דקות ארוכות את החישובים המסובכים. כאשר סיים את החישוב, אמר לו בנו שנפלה טעות בחישוב, ונקב בתוצאה שחישב בראשו.

Article MediumPurple.svg
Cquote2.svg

מתמטיקאי הוא אדם שיכול למצוא אנלוגיה בין משפטים. מתמטיקאי טוב הוא כזה שמוצא אנלוגיה בין הוכחות. מתמטיקאי מעולה שם לב לאנלוגיה בין תורות. המתמטיקאי המושלם הוא זה שיכול לראות אנלוגיה בין האנלוגיות.

Cquote3.svg
סטפן בנך

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום: לנסלוט הוגבן (אנ'), מתמטיקה למיליון, הוצאת "ניצנים", שנות ה-50 של המאה ה-20.

הספר יצא לאור במקורו באנגלית ב-1936 וזכה לפופולריות רבה. הספר סוקר את התפתחות המתמטיקה מהיוונים ועד למחצית המאה ה-19 בערך, עם דגש על השלכות והשפעת הידע המתמטי על תחומי החיים, כמו ניווט, כלכלה, טכנולוגיה ועוד. לסופר נקודת מבט מרקסיסטית, והספר כתוב בצורה מרתקת. לא מיועד למי שמעוניין ללמוד מתמטיקה מתקדמת, אך מספק נקודת מבט מעניינת, מקורית ומרתקת על ההיסטוריה של מתמטיקה.

ערמת מטבעות

100 עשירים קנאים רצו להוכיח את שהם נדיבים יותר איש מרעהו. העשיר הראשון תרם מטבע של מיליון שקל לצדקה, השני הניח ליד המטבע של הראשון ערמה של שני מטבעות (מיליון שקל כל אחת), השלישי הניח לידם ערמה של 3 מטבעות וכן הלאה. לאחר שנאסף כל הכסף הופיע גנב ולקח מטבע אקראי אחד, מתוך אחת הערמות וברח משום ששמו לב לנוכחותו. מה הסיכוי שהמטבע שנגנב היה מהערמה של האיש העשיר ביותר (הערמה עם 100 המטבעות)?

פתרון

התשובה תלויה במנגנון הבחירה האקראית של הגנב, כאשר לפנינו שתי אפשרויות:

א. הגנב בוחר באקראי ערימה מתוך מאה הערימות, ומתוכה בוחר באקראי מטבע.
ב. הגנב מתייחס לכל המטבעות כאל אוסף אחיד, ובוחר מטבע מבין כל המטבעות שבאוסף זה.

בשיטה הראשונה, ההסתברות שנבחרה הערימה של האיש העשיר ביותר היא 1/100, כלומר אחוז אחד.

בשיטה השנייה, ההסתברות שנבחר מטבע של האיש העשיר ביותר שווה למספר המטבעות שתרם האיש העשיר ביותר, 100, לחלק במספר המטבעות הכללי שהונח. כדי לחשב מספר זה אפשר להשתמש בשיטה לסכום טור חשבוני זה שעל פי המסופר גילה קרל פרידריך גאוס עוד בהיותו בן 7. גאוס גילה שעל מנת לחבר את כל המספרים מאחד עד מאה, אפשר לחלק אותם לזוגות: 100+1, 99+2, 98+3, וכן הלאה. הסכום בכל זוג הוא 101 וסה"כ ישנם 50 זוגות כאלו, ולכן סכום כל המספרים בין 1 ל-100 הוא 101x50. מכאן שהסיכוי שהמטבע שנגנב נתרם על ידי האיש הנדיב ביותר הוא: \frac{100}{101\cdot50}=2/101 כלומר קצת פחות מ-2 אחוז.


לחידות נוספות, לחידות קשות יותר
משפטים מפורסמים

המשפט האחרון של פרמהמשפט פיתגורסמשפטי האי-שלמות של גדלהמשפט היסודי של האריתמטיקה
מיון החבורות הפשוטותמשפט ארבעת הריבועים של לגראנז'משפט המינימקסמשפט השאריות הסיני
לרשימת המשפטים

השערות מפורסמות

השערת גולדבךהשערת רימןהשערת פואנקרההשערת הראשוניים התאומיםמשפט ארבעת הצבעיםP=NP
לרשימת הבעיות הפתוחות במתמטיקה

מבט אל הלוח – משפט או השערה מפורסמים

משפט המינימקס הוא משפט בתורת המשחקים העוסק במשחק סכום אפס סופי לשני שחקנים. (משחק סכום אפס הוא משחק שבו הרווח של כל משתתף מאוזן במדויק על–ידי ההפסד של המשתתפים האחרים). המשפט קובע כי לכל משחק מסוג זה קיימת דרך פעולה אופטימלית לשחק מבחינת שני השחקנים, כך שהרווח המינימלי של כל אחד אינו תלוי במעשי השני. המשפט הוכח בשנת 1928 על ידי ג'ון פון נוימן. משפט המינימקס נקרא כך כיוון שכל שחקן שואף למקסם את התשלום המינימלי שהוא יכול לקבל מהמשחק, או למזער ("למנם") את ההפסד המקסימלי.

לערך המלא

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

גאומטריה דיפרנציאלית היא ענף מתמטי העושה שימוש בכלים של החשבון הדיפרנציאלי והאינטגרלי כדי לבחון בעיות בגאומטריה. הענף פותח לראשונה במאות ה-18 וה-19 על בסיס התאוריה של עקומות במישור ובמרחב והתאוריה של משטחים במרחבים אוקלידים תלת-ממדיים. מאז סוף המאה ה-19, גאומטריה דיפרנציאלית עוסקת בעיקר במבנים גאומטרים על יריעות דיפרנציאליות. הגאומטריה הדיפרנציאלית קשורה במובנים רבים לענף טופולוגיה דיפרנציאלית ולהיבטים הגאומטריים של תורת המשוואות הדיפרנציאליות. גריגורי פרלמן, שהשתמש בזרימת ריצ'י כדי להוכיח את השערת פואנקרה, סיפק דוגמה אקטואלית לכוחה של הגאומטריה הדיפרנציאלית בפתירת שאלות בטופולוגיה והדגים את חשיבותן של השיטות האנלטיות.


לערך המלא

לרשימת כל הערכים בתחום

מבט על תחומים נוספים

משפטים מתמטיים חשובים ושימושיים - נוסחאות בגאומטריה - רשימת נוסחאות בטריגונומטריה - נוסחאות גזירה - חוקי הלוגריתמים

P computing.svg
P At sign.png
P physics-2.png
P chemistry.svg
P Economy.png
P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב

ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים