פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

לערך המלא

Arithmetic symbols2.svg

ארבע פעולות החשבון הן פעולות החשבון הבסיסיות ביותר, השימושיות בחיי היומיום של מרבית בני האדם. פעולות אלה נלמדות בתחילת לימודי המתמטיקה בבית הספר היסודי, וחרף פשטותן היחסית, נדרשת לביצוען מידה מסוימת של הפשטה.

ארבע פעולות החשבון הן חיבור, חיסור, כפל וחילוק. כל אחת מפעולות אלה היא פעולה בינארית, כלומר פונקציה הפועלת על שני מספרים, אך ניתן לכתוב ביטויים הכוללים מספרים רבים ופעולות רבות. במקרה זה נחוצים כללים לקביעת סדר ביצוע הפעולות (פעולה קרויה גם אופרטור, ומספרים שעליהם היא פועלת קרויים אופרנדים). הכלל הראשון קובע שפעולות כפל וחילוק קודמות לפעולות חיבור וחיסור. כדי לבצע את הפעולות בסדר שונה מהאמור בכלל זה יש להשתמש בסוגריים. לאחר שני כללים אלה, הפעולות מתבצעות משמאל לימין.

באלגברה מופשטת מעוניינים לחקור את תכונותיהן של פעולות שמוגדרות על קבוצות כלשהן, לא בהכרח של מספרים, אך שמזכירות את פעולות החשבון על המספרים.

End of universe.jpg

משולש, כפי שהוא נראה במערכות גאומטריות שונות. המשולש התחתון הנו משולש המתקיים בגאומטריה האוקלידית. המשלוש האמצעי מתקיים בגאומטריה היפרבולית והעליון בגאומטריה ספירית.

המספרים מ-0 ועד 19, בספרות המאיה

בכתיבה לפי בסיס \ k, גודלה של הספרה \ a_n הנמצאת במקום \ n במספר \ ...a_{n+1} a_n a_{n-1} ... a_2a_1 הוא \ a_n \times k^{n-1}. כך, למשל, במספר \ 2856 בבסיס עשרוני גודלה של הספרה \ 8 הוא \ 8 \times 10^2 ובבסיס בינארי, גודלה של הספרה \ 1 השמאלית ביותר במספר \ 1010 הוא \ 1 \times 2^3. עם זאת, בקרב בני המאיה, אשר עשו שימוש בבבסיס עשרים, התקיימה באופן ייחודי הנוסחה \ a_n\times 18 \times 20^{n-2}.

להרחבה ראו היסטוריה של האריתמטיקה

Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: נטגר

עתון מתמטי לנוער.

Aumann-1080.jpg

פרופ' ישראל אוֹמַן (Robert J. Aumann), נולד ב-8 ביוני 1930, מתמטיקאי ישראלי, חתן פרס נובל לכלכלה לשנת 2005. תחום מחקרו העיקרי הוא תורת המשחקים.

אומן נולד בעיר פרנקפורט שבגרמניה. משפחתו היגרה לארצות הברית ב-1938, כחודשיים לפני ליל הבדולח. אומן הנו בעל אזרחות אמריקאית בנוסף לזו הישראלית וחבר באקדמיה הלאומית למדעים של ארצות הברית.

למד בישיבה תיכונית במנהטן, ואחר כך למד לתואר ראשון במתמטיקה בניו יורק סיטי קולג' ולתואר שני ותואר דוקטור במכון הטכנולוגי של מסצ'וסטס (MIT). ב-1955 עבר לאוניברסיטת פרינסטון, שם חקר את תורת המשחקים, שהייתה תחום מחקר חדש באותה העת. בשנת 1956 עלה לישראל והתיישב בירושלים.

פרופסור אומן זכה בפרס נובל לכלכלה על עבודתו בתחום תורת המשחקים, שהיא ענף מתמטי שמטרתו לחקור מצבי עימות ואסטרטגיות לקבלת החלטות. אומן נחשב למייסדם של כמה ענפים בתורת המשחקים. הוא הראשון שניתח באופן מאורגן סדרות של משחקים, כשהוא מראה כיצד עצם החזרה על אותו מצב יכולה לאכוף התנהגות של שיתוף פעולה, גם כאשר המשחק הבודד אינו מעודד התנהגות כזו. בעקבות עבודתו, משתמשים כלכלנים בשיטות מתחום תורת המשחקים לניתוח מצבים מתמשכים של ניגוד אינטרסים, כמו מלחמות מחירים בין יצרנים המתחרים על אותו שוק.

Article MediumPurple.svg
Cquote2.svg

בסיס 8 הוא למעשה כמו בסיס 10. אם חסרות לך שתי אצבעות

Cquote3.svg
טום לרר

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Arnon avron - godel.jpg

ארנון אברון, ‏משפטי גדל ובעיית היסודות של המתמטיקה, סדרת אוניברסיטה משודרת, בהוצאת משרד הביטחון - ההוצאה לאור, 1998

כשאר הספרים בסדרת אוניברסיטה משודרת, גם ספר זה מבוסס על הרצאות שנתן מחברו בגלי צה"ל. הספר עוסק בחקר יסודות המתמטיקה, שזכה למחקר אינטנסיבי בעשורים הראשונים של המאה העשרים והגיע לשיאו במשפטי האי שלמות של גדל. הספר עוסק בנושאים מתחום ההיסטוריה של המתמטיקה והפילוסופיה של המתמטיקה. המחבר, ארנון אברון, הוא פרופסור בחוג למדעי המחשב באוניברסיטת תל אביב. בפתח דבר לספרו הוא מציין שהספר "פונה הן לקוראים החסרים כמעט כל רקע מתימטי והן למתמטיקאים מקצועיים שהנושאים הנידונים כאן אינם שייכים לתחומי התמחותם".

כמה מאלפי כלבים יש בכלבייה, אם בסך הכול יש בה 30 ראשים ו-100 רגליים?

פתרון

זו בעיה פשוטה באלגברה בסיסית. נסמן ב-x את מספר האנשים ובב-y את מספר הכלבים, ונקבל שתי משוואות בשני נעלמים:

x + y = 30
2x + 4y = 100

שפתרונן: 20 כלבים ו-10 אנשים.


לחידות נוספות, לחידות קשות יותר
משפטים מפורסמים

המשפט האחרון של פרמהמשפט פיתגורסמשפטי האי-שלמות של גדלהמשפט היסודי של האריתמטיקה
מיון החבורות הפשוטותמשפט ארבעת הריבועים של לגראנז'משפט המינימקסמשפט השאריות הסיני
לרשימת המשפטים

השערות מפורסמות

השערת גולדבךהשערת רימןהשערת פואנקרההשערת הראשוניים התאומיםמשפט ארבעת הצבעיםP=NP
לרשימת הבעיות הפתוחות במתמטיקה

מבט אל הלוח – משפט או השערה מפורסמים

השערת קולץ היא בעיה בתורת המספרים, הקשורה בהתייצבות של התהליך המספרי הבא:

מגדירים כלל, באופן הבא: מספרים זוגיים יש לחלק בשתיים, בעוד שמספרים אי-זוגיים יש להכפיל בשלוש ולהוסיף לתוצאה אחת. ההשערה היא שהפעלה חוזרת של כלל זה תביא בסופו של דבר למספר 1, ואין זה משנה מהי נקודת ההתחלה. לדוגמה, הפעלת התהליך על המספר 11 מביאה ל- 34, משם ל- 17, ואחר-כך, לפי הסדר, \ 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow  20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1. בדוגמה זו, כמו במקרים רבים אחרים, מתקבלים מספרים גדולים יחסית, אך בסופו של דבר הירידות מתגברות על העליות, והתוצאה מגיעה ל- 1.

השערה זו זכתה לפופולריות רבה, בעיקר משום שקל מאוד לתכנת ולבדוק אותה בעזרת מחשב. ההשערה נבדקה עבור מספרים עד ל- 27 מיליון מיליארדים, אבל לא ידועה לה עדיין כל הוכחה. פול ארדש אמר על השערה זו כי "המתמטיקה עדיין לא מוכנה לבעיות כאלה", ואף הציע, כדרכו, פרס כספי בן 500 דולר למי שימצא לה הוכחה.

לערך המלא

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

טריגונומטריהיוונית trigōnon "משולש" + metron "מדידה") היא ענף במתמטיקה העוסק בקשר שבין זוויות וצלעות. את הקשרים האלו מאפיינים על ידי הפונקציות הטריגונומטריות, כאשר רוב העיסוק בתחום מתמקד באפיון תכונותיהן. הפונקציות הטריגונומטריות הבסיסיות הן הסינוס והקוסינוס. לטריגונומטריה שימושים רבים במתמטיקה, הן בממתטיקה טהורה והן במתמטיקה שימושית, ובתחומים רבים במדעי הטבע והטכנולוגיה.

לערך המלא

לרשימת כל הערכים בתחום

מבט על תחומים נוספים

משפטים מתמטיים חשובים ושימושיים - נוסחאות בגאומטריה - רשימת נוסחאות בטריגונומטריה - נוסחאות גזירה - חוקי הלוגריתמים

P computing.svg
P At sign.png
P physics-2.png
P chemistry.svg
P Economy.png
P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב

ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים