פורטל:מתמטיקה

מתוך ויקיפדיה, האנציקלופדיה החופשית
קפיצה אל: ניווט, חיפוש

Gnome-colors-view-refresh.svg רענון הפורטל Netvibes.svg כיצד אוכל לעזור?    

P mathematics.svg

המתמטיקה מוגדרת לעתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.

מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.

לערך המלא

גאורג קנטור

משפט קנטור הוא משפט מתמטי יסודי בתורת הקבוצות. באופן פורמלי, המשפט קובע שהעוצמה של כל קבוצה קטנה מהעוצמה של קבוצת התת-קבוצות שלה. משמעות המשפט היא שלכל קבוצה, אפילו אינסופית, יש קבוצה גדולה ממנה (במובן מדויק שיוגדר בהמשך). מסקנה מיידית היא שיש אינסוף גדלים אינסופיים השונים זה מזה, ואין אינסוף גדול ביותר.

את המשפט הגה והוכיח אבי תורת הקבוצות, גאורג קנטור, בשנת 1891. שיטת הלכסון אותה המציא כדי להוכיח את המשפט ותוצאות דומות, מנצלת את הסתירות שביסוד פרדוקס הספר ופרדוקס השקרן, ומשמשת בתחומים רבים החורגים מתורת הקבוצות.

End of universe.jpg

משולש, כפי שהוא נראה במערכות גאומטריות שונות. המשולש התחתון הנו משולש המתקיים בגאומטריה האוקלידית. המשלוש האמצעי מתקיים בגאומטריה היפרבולית והעליון בגאומטריה ספירית.

כמות המספרים הראשוניים עד X והפער בינה לבין הערכת הנוסחה שבמשפט המספרים הראשוניים
x \pi(x) \ [\pi(x)-x/\ln x] \ [Li(x)-\pi(x)]
101 4 0  2
103 168 23  10
106 78,498 6,116  130
109 50,847,534 2,592,592  1,701
1012 37,607,912,018 1,416,705,193  38,263
1015 29,844,570,422,669 891,604,962,452  1,052,619


במתמטיקה כמו במדעי הטבע נהוג לשער השערות על בסיס אינדוקציה (הסקת מסקנות מהפרט אל הכלל). אולם, בשונה ממדעי הטבע, על מנת שהשערה תהפוך למשפט נדרשות גם הוכחות ש"לוכדות את האינסוף" ולא רק מספר סופי של מקרים. על אף שבהרבה מקרים השערות עם ראיות מספריות חזקות מוכחות בסופו של דבר, חלקן מופרכות. תופעה זאת נקראת לעתים חוק המספרים הקטנים.

דוגמה לתופעה זאת הייתה ההשערה לפיה המספרים 31, 331, 3331 וכו' ראשוניים, שהייתה נכונה למספרים הראשונים בסדרה והופרכה רק כשהתגלה ש-333,333,331 פריק.

דוגמה קיצונית אף יותר, גם היא עוסקת במספרים ראשוניים, קשורה למשפט המספרים הראשוניים, שמספק קירוב טוב למספר הראשוניים מתחת למספר X. הקירוב נתון על ידי פונציית הלוגוריתם האינטגרלי(אנ') Li(x) (ששווה בקירוב, פחות מדויק, ל\frac{x}{\ln(x)}, דהיינו X לחלק לתוצאת הלוגריתם הטבעי עבורו).

לאחר בדיקת כמות עצומה של מספרים, הערכה זו תמיד מפריזה במעט במספר הראשוניים, אך ג'ון אדנזור ליטלווד גילה שבשלב כלשהו הנוסחה תמעיט בכמות המספרים הראשוניים, מבלי להצביע על המספר בו יקרה ההיפוך.

להשערות חשובות כמו המשפט האחרון של פרמה והשערת רימן נמצאו ראיות התקפות למספרים רבים בעזרת מחשבי על. אולם בהיעדר הוכחה הן נשארו פתוחות במשך שנים רבות (האחרונה עד היום).

Benq joybook transparent.png

בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב.

אתר היום: The Grey Labyrinth (באנגלית)

אוסף מדהים של חידות מתמטיות, פרי עמלו של קווין לין.

Domenico-Fetti Archimedes 1620.jpg

ארכימדס (ביוונית: Άρχιμήδης ‏287‏‏‏ - ‏‏212 לפנה"ס) היה מתמטיקאי, פיזיקאי ומהנדס יווני. אף על פי שמעט ידוע על חייו, הוא נחשב לאחד מהמדענים המובילים של העת העתיקה. בנוסף לתגליות בתחומי המתמטיקה והגאומטריה, תכנן מכונות רבות שנחשבו לחדשניות מאוד בתקופתו. הוא הוביל את הבנת יסודות ההידרוסטטיקה, ותיאר את החוק עליו מבוסס המנוף, המכשיר עליו מבוססת המכניקה. הפיתוחים המוקדמים שלו בחשבון אינפיניטסימלי כללו את הסיכום הידוע הראשון של טור אינסופי בשיטה שעדיין בשימוש כיום. היסטוריון המתמטיקה אריק טמפל בל מנה את ארכימדס כאחד משלושת המתמטיקאים הגדולים בכל הזמנים, יחד עם סיר אייזק ניוטון וקרל פרידריך גאוס.

Article MediumPurple.svg
Cquote2.svg

מתמטיקאי, בדומה לצייר או משורר, יוצר תבניות. אם תבניותיו יותר עמידות משל האמנים, זאת משום שהן בנויות מרעיונות. צייר מקיים תבניות בצבעים, משורר - במילים.

Cquote3.svg
גודפרי הרולד הארדי

בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב.

ספר היום:

Taming the infinite he.jpg

איאן סטיוארט, לאַלף את האינסוף - סיפורה של המתמטיקה, ספרי עליית הגג וידיעות ספרים, 2012

זהו מבוא פופולרי מקיף לתולדות המתמטיקה, מראשית ייצוגם של מספרים בפרהיסטוריה ועד להוכחת השערת פואנקרה בתחילת המאה ה-21. המחבר מציין: "רשימת הנושאים שאינם מופיעים בספר ארוכה יותר מרשימת אלה שכן מופיעים בו". תוצאה זו בלתי-נמנעת, בהתחשב ברוחב היריעה של המתמטיקה, אך הספר עוסק בקשת רחבה של נושאים, תוך הצגת המתמטיקאים, העצמים והרעיונות המרכיבים את ההיטוריה של המתמטיקה.

אלי נתקע בכביש בשל תקלה טכנית במכוניתו. בין האנשים העוברים בדרך, רק מחצית יבחינו במכונית התקועה. מתוכם, מחצית מהאנשים אכפתיים מספיק כדי לעזור לאדם במצוקה, ואחד מכל שני אנשים מתוכם ניחן בידע טכני שיוכל לסייע. אדם שעבר בדרך לא חילץ את אלי. מה ההסתברות שזהו אדם אכפתי?

פתרון

ההסתברות שאדם אקראי יעזור לאלי היא 1/8=1/2x1/2x1/2, ולכן ההסתברות שאדם אקראי לא יעזור לו היא 7/8. אדם אכפתי לא יעזור לאלי אם הוא לא מבחין במכונית (הסתברות 1/4) או אם הוא מבחין במכונית אך איננו בעל כישורים טכניים (הסתברות 1/8). לכן ההסתברות שאדם אכפתי לא יעזור לאלי היא 3/8. מכאן שההסתברות שאדם שלא עוזר לאלי הוא אכפתי היא (7/8)/(3/8)=3/7.

ניסוח הפתרון באמצעות נוסחת ההסתברות המותנית:

ההסתברות המותנית \ P(A|B) היא הסיכוי להתרחשותו של \ A, בהנחה ש-\ B אכן התרחש. ניתן לחשב הסתברות מותנית על-פי הנוסחה \ P(A|B) = \frac{P(A\cap B)}{P(B)}.

במקרה שלנו, המאורע \ A הוא "האדם שעבר הוא אכפתי", והמאורע \ B הוא "אלי לא חולץ". המאורע \ A\cap B הוא "אדם אכפתי לא חילץ את אלי", ומכאן ש-\ P(A\cap B)=\frac{3}{8}. בנוסף, \ P(B)=\frac{7}{8}, ומכאן

\ P(A|B) = \frac{P(A\cap B)}{P(B)}=\frac{\frac{3}{8}}{\frac{7}{8}}=\frac{3}{7}.


לחידות נוספות, לחידות קשות יותר
משפטים מפורסמים

המשפט האחרון של פרמהמשפט פיתגורסמשפטי האי-שלמות של גדלהמשפט היסודי של האריתמטיקה
מיון החבורות הפשוטותמשפט ארבעת הריבועים של לגראנז'משפט המינימקסמשפט השאריות הסיני
לרשימת המשפטים

השערות מפורסמות

השערת גולדבךהשערת רימןהשערת פואנקרההשערת הראשוניים התאומיםמשפט ארבעת הצבעיםP=NP
לרשימת הבעיות הפתוחות במתמטיקה

מבט אל הלוח – משפט או השערה מפורסמים

אי שוויון המשולש הוא התרגום האלגברי לעובדה שבמשולש, אורכה של כל צלע קטן מסכום ארכי הצלעות האחרות. אי-שוויון המשולש מבטא את העובדה שלא ניתן לקצר את הדרך מ- A ל- C על ידי מעבר בנקודה B (כלומר: הקו הישר הוא הדרך הקצרה ביותר בין שתי נקודות). בצורתו הפשוטה, עבור זוג מספרים \ x ו- \ y, מתקיים \ |x+y|\leq |x|+|y|.

זוהי תכונה יסודית כל-כך של מושג ה"מרחק", עד שהיא מהווה אחת מהאקסיומות המגדירות מטריקה ומרחב מטרי. לפיכך, אי שוויון זה נכון, בהכללה, עבור כל נורמה (המושג "נורמה" הוא הכללה של מושג ה"אורך"). בפרט, אי שוויון המשולש האינטגרלי הוא גרסה של אי שוויון המשולש עבור הנורמה האינטגרלית.

לערך המלא

מבט על משפטים והשערות נוספים

נושאים במתמטיקה
כמות אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים
שינוי אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית
מבנה אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים
מרחב אלגברה לינארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג
מתמטיקה בדידה חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים
יסודות ושיטות לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות
מתמטיקה יישומית אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית
עולם המתמטיקה הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט

טריגונומטריהיוונית trigōnon "משולש" + metron "מדידה") היא ענף במתמטיקה העוסק בקשר שבין זוויות וצלעות. את הקשרים האלו מאפיינים על ידי הפונקציות הטריגונומטריות, כאשר רוב העיסוק בתחום מתמקד באפיון תכונותיהן. הפונקציות הטריגונומטריות הבסיסיות הן הסינוס והקוסינוס. לטריגונומטריה שימושים רבים במתמטיקה, הן בממתטיקה טהורה והן במתמטיקה שימושית, ובתחומים רבים במדעי הטבע והטכנולוגיה.

לערך המלא

לרשימת כל הערכים בתחום

מבט על תחומים נוספים

משפטים מתמטיים חשובים ושימושיים - נוסחאות בגאומטריה - רשימת נוסחאות בטריגונומטריה - נוסחאות גזירה - חוקי הלוגריתמים

P computing.svg
P At sign.png
P physics-2.png
P chemistry.svg
P Economy.png
P Computer-science.png
מחשבים אינטרנט פיזיקה כימיה כלכלה מדעי המחשב

ערכים המחפשים עורכים

Exquisite-kwrite.png

דיונים, ייעוץ ועזרה


מהו פורטל? - רשימת כל קטגוריות המשנה והערכים